Resting State Functional Connectivity Abnormalities Are Associated With Cognitive Impairment in Patients With Pediatric Multiple Sclerosis

Maria A. Rocca1, Paola Valsasina2, Maria Pia Amato3, Martina Absinta1, Angela Ghezzi1, Lucia Moiola1, Agnese Fiorino1, Pierangelo Veggio1, Andrea Falini1, Giancarlo Comi3, Massimo Filippi4, and the MS and Neuroimaging Study Groups of the Italian Neurological Society2

1Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy, Italy,
2Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy, Italy,
3Department of Neurology, University of Florence, 4MS Centre, Ospedale di Gallarate, 5Department of Neurology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy, Italy,
6Department of Child Neurology and Psychiatry, Fondazione IRCCS Istituto Neurologicoco C Mondino, Pavia, Italy, Italy,
7Department of Neuroradiology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy, Italy.

Introduction. Previous active functional MRI (fMRI) studies showed only minor functional abnormalities in patients with pediatric multiple sclerosis (MS) vs. controls [1]. Resting state (RS) functional connectivity (FC) in these patients has never been explored.

Objective. Aim of this study was to explore abnormalities of FC and functional interaction among cognitive networks (RSNs) in patients with pediatric multiple sclerosis (MS), as well as their correlation with cognitive impairment and T2 focal lesions.

Methods. Brain dual-echo and RS fMRI scans were acquired from 34 pediatric MS patients, and 18 age-matched controls. T2 lesion volume (T2LV) was assessed on dual-echo images. Independent component analysis (ICA) [2] and a template-matching procedure were used to identify the default mode network (DMN), the executive control network (ECN), the salience network (SN) and the attention network. Within-group and between-group FC comparisons were performed with SPM8. The functional network connectivity (FNC) toolbox [3] was used to assess changes of interactions among RSNs. In MS patients, correlations between network abnormalities, cognitive impairment and structural damage were also assessed.

Results. The spatial patterns of the DMN, ECN, SN and of the attention network are shown in the Figure.

Significant RS FC changes were detected in all RSNs of pediatric MS patients vs. controls. A decreased FC was found in regions of the posterior lobes, as well as in the cerebellum of the attention, SN and ECN. Conversely, an increased FC was found in frontal regions of the SN and DMN (see Table for further details).

<table>
<thead>
<tr>
<th>Region</th>
<th>DMN</th>
<th>SN</th>
<th>Attention network</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MNI space coordinates]</td>
<td>R superior frontal gyrus (SFG)</td>
<td>Posterior cingulate cortex (PCC)</td>
<td>L superior occipital gyrus</td>
</tr>
<tr>
<td></td>
<td>[9 54 14]</td>
<td>[0 -55 30]</td>
<td>[-33 -91 30]</td>
</tr>
<tr>
<td>P (ANOVA)</td>
<td>0.008</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>0.60</td>
<td>1.06</td>
<td>0.67</td>
</tr>
<tr>
<td>Pediatric MS</td>
<td>0.90</td>
<td>0.61</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table. Abnormalities of RS FC (expressed as Z score) in pediatric MS patients vs. healthy controls.

FC decrease in the PCC was higher in cognitively impaired vs. cognitively preserved patients (p=0.01), whereas FC increase in the R SFG and R IFG were higher in cognitively preserved than in cognitively impaired patients (p=0.01 and 0.02, respectively). Patients with lower T2LV had a higher FC increase in the IFG (r=-0.36, p=0.04). Confirming the results of previous studies [4], the DMN and the attention network were significantly anticorrelated in healthy controls (r=-0.12, p=0.03), but they were disconnected in pediatric MS patients (r=-0.02, p=0.72).

Conclusion. Significant RS FC abnormalities occur in cognitive RS networks of pediatric MS. A decreased FC is associated with cognitive impairment, whereas increased FC seems to be related with a preserved functional reserve.


This work has been partially supported by a grant from Italian Ministry of Health (GR-2009-1529671)