MRI observation of intraplaque hemorrhage and atherosclerotic plaque severity in patients

James Qiupeng Zhan1, Alan Moody2, and Cristina Nasui2

1Sunnybrook Hospital, Toronto, Ontario, Canada, 2Medical Imaging, University of Toronto, Toronto, Ontario, Canada

Introduction. Intraplaque hemorrhage (IPH) plays a critical role in the increase of plaque vulnerability. It has been thought to be a stimulant in the progression of atherosclerosis. Methemoglobin may provide an endogenous contrast agent to depict vessel-wall disease activity in the setting of intraplaque hemorrhage. 3D MR imaging of intraplaque hemorrhage (MRIPH) is a high-spatial resolution 3D sequence that depicts complicated plaque in the carotid arteries by use of a single contrast weighting; the innate T1 hyperintense tissue contrast is thought to be provided by methemoglobin. MRIPH also has been used to identify red blood cell–derived methemoglobin as a driver of lipid oxidation, reflected by increased T1 signal intensity. Multicontrast-weighted MRI has been utilized to observe IPH causing progression of human atherosclerosis. The aim of this study was to use 3D MRIPH and 3D TOF MRA at 3T to observe IPH and plaque severity in atherosclerotic patients.

Materials and Methods. 16 patients with confirmed 30-70% carotid stenosis by clinical TOF MRA and CeMRA were recruited. IPH positive was defined as equal to or higher than 150% of signal of adjacent muscle. Both automatic and manual segmentation were used to delineate lumen contour and outer wall contour. Multivariate ANOVA is used to compare lumen area, outer wall area, vessel wall area, and maximum vessel wall thickness. This study shows that IPH occurs at the more severe atherosclerotic cases having the following characteristics: a thicker outer wall, smaller vessel lumen bigger vessel wall and bigger maximum vessel wall thickness. This indicates that IPH is one of the main factors in advanced atherosclerotic plaque. This is a first time use of the MRIPH sequence to measure vessel wall and to define IPH at the same time. Through the use of this sequence, one eliminates the need for multi-parametric MRI due to the better correlation of IPH and slice volume. So, comparing with multi-parametric imaging, the rapidly acquired 3D MRIPH and 3D TOF scans could be used clinically.

Discussion and Conclusions: This study shows that IPH occurs at the more severe atherosclerotic cases having the following characteristics: a thicker outer wall, smaller vessel lumen bigger vessel wall and bigger maximum vessel wall thickness. This indicates that IPH is one of the main factors in advanced atherosclerotic plaque. This is a first time use of the MRIPH sequence to measure vessel wall and to define IPH at the same time. Through the use of this sequence, one eliminates the need for multi-parametric MRI due to the better correlation of IPH and slice volume. So, comparing with multi-parametric imaging, the rapidly acquired 3D MRIPH and 3D TOF scans could be used clinically.

Acknowledgement: This study is supported by Canadian Institutes of Health Research grant.

References