Steady State MRA Techniques With a Blood Pool Contrast Agent Improve Visualization of Pulmonary Venous Anatomy Compared with Time Resolved MRA Pre and Post Catheter Ablation in Atrial Fibrillation

Rahul Rustogi1, Mauricio Galizia1, Jeremy Collins1, Darshit Thakrar1, and James Carr1
1Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States

Introduction: Time-resolved magnetic resonance angiography (TR-MRA) with improved temporal resolution compared to conventional MRA is a useful technique for imaging the dynamic arteriovenous transit in the pulmonary circulation [1]. Increased temporal resolution is achieved in part via a reduction in spatial resolution compared with conventional MRA [2]. Blood pool contrast agents enable steady state acquisition, obviating the need for imaging during the first pass; ECG- and navigator gating achieve high spatial resolution at an acceptable imaging time. The purpose of this study is to assess steady state MRA (SS-MRA) for pulmonary vein mapping using a blood pool contrast agent, comparing to the gold standard TR-MRA in a patient cohort undergoing pulmonary vein isolation.

Materials and Methods: 28 patients (14 males, age 55.7 ± 10.1 years; 14 females; 50 ±1.4 years) undergoing pre- and post – ablation pulmonary vein mapping were evaluated with conventional TR-MRA and SS-MRA.

Imaging Technique: Imaging was performed on a 1.5-T MRI scanner (Avanto, Siemens Healthcare, Erlangen, Germany). MRA protocol consisted of TR-MRA followed by SS-MRA after intravenous injection of gadofosveset trisodium (Ablavar, Lantheus, U.S.A). TR-MRA of the pulmonary vasculature was obtained in a coronal orientation centered on the left atrium using a 3D gradient echo fast low angle shot (FLASH) pulse sequence. Typical TR-MRA acquisition parameters: TR/TE: 1.6/0.8 msec; flip angle, 30º; acceleration factor × 2; partial Fourier 6/8 in x-y and z directions; acquisition time 3-4 sec/3D TWIST datasets. Contrast bolus timing was achieved using care bolus technique. SS-MRA consisted of free-breathing ECG-gated IR-FLASH and IR-fast imaging with steady state free precession (IR-FISP) in a sagittal oblique orientation. Typical IR-FLASH acquisition parameters: TR/TE/TI: 3.5/1.5/260, flip angle 18º, and IR-FISP had: TR/TE/TI: 3.3/1.5/260, flip angle 70º GRAPPA × 2, and 3 minute acquisition. Respiratory gating was achieved using a navigator acquisition with an average acceptance window of 35%. Analysis: Pulmonary veins were measured in orthogonal dimensions using double oblique multi-planar reformatting. Agreement between methods was analyzed using Pearson’s coefficients of correlation, and Bland-Altman plots, with TR-MRA as the reference standard. Images were qualitatively assessed by three independent observers (R.R., M.G., and D.T.) on a scale of 1 to 4, where 1=poor, 2=fair, 3=good, and 4=excellent. The presence of common ostia, accessory veins, or stenosis was recorded. Image quality was compared among techniques by the Friedman’s test. Inter-observer agreement was assessed using unweighted Cohen’s kappa and comparing the proportion of cases which showed complete agreement between all readers.

Results: Reviewers graded image quality superior for IR-FISP (Technique B); followed by IR-FLASH (Technique C) and TR-MRA (Technique A) for all observers (Figure 1). Kappa scores demonstrated good interobserver agreement for IR-FISP and IR-FLASH, with modest agreement for TR-MRA. Bland-Altman analysis of orthogonal venous diameters for interobserver agreement indicated a mean difference of 0.01 cm [limits of agreement (LA): -0.45 to 0.43 cm], 0.07cm (LA: -0.64 to 0.51), and 0.3 cm (LA: -1.27 to 0.67 cm) for IR-SSFP, IR-FLASH and TR-MRA, respectively. Pearson’s coefficients of correlation showed good correlation between techniques.

Conclusion: SS-MRA with a blood pool agent compared favorably to TR-MRA for assessment of pulmonary venous anatomy. Reviewers graded quality for both SS-MRA acquisitions superior to that at TR-MRA. Steady state imaging obviates the need for imaging during the first pass and while enabling a high spatial resolution acquisition.

References:

Fig. 1: Inter-observer agreement for qualitative assessment for assessment of venous anatomy and abnormalities being higher for IR-FISP and IR-FLASH compared with TR-MRA.

Fig. 2: Image quality of TR-MRA (a) lacks the spatial resolution compared with SS-MRA techniques of IR-FISP (b) and IR-FLASH (c). The images show early branching pattern of the right superior pulmonary vein. High spatial resolution also increases confidence of excluding presence of thrombus in the atrial appendages.