Brain sodium accumulation and spreading correlate with disability in multiple sclerosis

Wafaa Zaaraoui1, Simon Konstandin2, Bertrand Audoin1, Armin M. Nagel1, Audrey Rico1, Irina Malikova1, Elisabeth Soulieri1, Patrick Viout1, Sylviane Confort-Gouny1, Patrick J. Cozzone1, Jean Pelletier1, Lothar R. Schad2, and Jean-Philippe Ranjeva1

1CRMBM UMR CNRS 6612 - Aix-Marseille Université, Marseille, France, 2Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany, 3German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Heidelberg, Germany

Objective: The key role of sodium accumulation leading to neuronal injury in multiple sclerosis has recently been highlighted. Using in vivo sodium MRI, we aimed here to i) quantify brain sodium accumulations and ii) characterize for the very first time spatial spreading of sodium abnormalities at different stages of relapsing remitting multiple sclerosis (RRMS).

Methods: MR explorations were performed on a 3T Verio system holding multi-nuclear options (Siemens, Erlangen, Germany) in two groups of RRMS patients (13 early RRMS, 13 advanced RRMS) and 15 healthy controls. 23Na MRI was acquired using a double-tuned 23Na-1H volume head coil (Rapid Biomedical, Rimpar, Germany) and a density-adapted three-dimensional radial projection reconstruction pulse sequence (DA-3DPR)3 (TE=200µs, TR=120ms, 17000 projections and 369 samples per projection, flip angle = 87°, acquisition time = 34 min, nominal spatial resolution of 4.5x4.5x4.5mm3 after Hanning filtering) with two tubes filled with 50 mM of sodium placed in the field of view bilaterally close to the subject’s head to serve as external references. High resolution proton MRI 3D-MPRAGE (TR=2300ms, TE=3ms, TI=900ms, FOV=256x256mm2, matrix=256x256, 160 slices, 1x1x1mm3 of resolution) and T2-weighted sequence (TR=9940ms, TE=90ms, FOV=256x256mm2, matrix=256x256, 49 slices, 3-mm thickness, 1x1x3mm3 of resolution) were obtained using a 32-element 1H head coil (Siemens).

The optimized post-processing pipeline included (1) reconstruction of the quantitative 3D radial sodium images (q23Na MRI) (home-made procedure developed on Matlab); (2) coregistration of the q23Na MRI with the high resolved 1H 3D-MPRAGE (Fig1). For the global brain compartments analysis, the post-processing steps included (3A) segmentation of the 1H 3D-MPRAGE (VBM8) to obtain white matter (WM) and grey matter (GM) masks for all subjects and delineation of T2 lesions onto the 1H T2w images (IDL) to obtain the T2 lesions mask for each patient; (4A) application of masks to q23Na MRI to obtain total sodium concentrations (TSC) from each brain compartment (WM, GM and T2 lesions) (Fig2); (5A) statistical analysis (Wilcoxon rank test). For the statistical mapping analysis (SPM8), the post-processing steps included (3B) normalization and smoothing (8mm FWHM Gaussian kernel) of the coregistered q23Na MRI and 1H-MPRAGE; (4B) voxelwise statistical analysis on the q23Na MRI to locate TSC abnormalities (3-group ANOVA).

Results: For the two groups of MS patients, TSC was increased inside demyelinating T2 lesions, while increased TSC in normal appearing WM and GM was only observed in advanced RRMS (Fig3). In patients, increased TSC inside GM was correlated to disability (EDSS) (p=0.015), disease duration (p=0.030) and T2 lesion load (p=0.001) but not to GM atrophy (p=0.366). Statistical mapping analysis showed increased TSC circumscribed to the cerebellum, the medial temporal lobes and the splenium of the corpus callosum in early RRMS while advanced RRMS showed a widespread abnormal accumulation of TSC inside the whole brain (caudate, thalami, insula, occipital, temporal and prefrontal cortices and the entire corpus callosum...) as illustrated in Fig4. Finally, EDSS was correlated to TSC increases inside motor and motor-planning regions (primary motor area, middle and superior frontal gyrus and cerebellum) stressing the functional role of sodium accumulation in MS.

Conclusions: Brain sodium accumulation dramatically spreads during the course of the disease especially in the normal appearing brain tissues concomitantly to progression of disability and independently from atrophy. Brain sodium MRI appears as a relevant tool to characterize and time the pathological cascade occurring between inflammation and neurodegeneration in MS.