INTRODUCTION

Chronic fatigue syndrome (CFS) is a complex illness, which is often misdiagnosed as a psychiatric illness. In two previous studies, we used 1H MRSi to compare neurometabolites in CFS with generalized anxiety disorder (GAD) [1] and major depressive disorder (MDD) [2], common neuropsychiatric disorders with extensive symptom overlap with CFS. In those reports, CFS patients showed significantly elevated ventricular cerebrospinal fluid (CSF) lactate compared to healthy control subjects [1,2] and to patients with GAD [1], while no differences were found between CFS and MDD [2]. Importantly, our replicated finding of significant elevations of ventricular lactate in CFS suggested a potential illness-associated biomarker, whose understanding could shed new light onto the pathophysiology of the illness. In the present third independent cross-sectional study, we aimed to investigate a pathophysiological model of CFS, which postulates that sustained oxidative stress [3] and associated oxidant damage lead to cerebral hypoperfusion and/or to secondary mitochondrial dysfunction that could potentially explain our observed cross-sectional elevations of ventricular lactate. Specifically, this study had two primary objectives: (a) to use 1H MRSi to replicate in a new cohort our finding of cross-sectional elevations of ventricular lactate in CFS, and (b) to determine whether the postulated [3] and experimentally documented [4,5] oxidative stress increases in the disorder are associated with antioxidant capacity deficit by using 1H MRSi to measure in vivo brain levels of glutathione (GSH), the most abundant antioxidant in CNS. In addition, we used arterial spin-labeling (ASL) MRI to replicate prior observations of decreased regional cerebral blood flow (rCBF) in CFS [6,7] that may explain the observed lactate elevations, and 31P MRSi to measure regional brain levels of high-energy phosphates (HEPs) as indices of a possible secondary mitochondrial dysfunction in CFS [3], whose presence might also be associated with elevations in lactate.

METHODS

Subjects: Participants included 15 unmedicated CFS patients diagnosed according to the CDC criteria [8], 15 unmedicated patients with major depressive disorder (MDD), as established by DSM-IV-TR criteria who served as “disease controls”, and 13 age- and sex-matched healthy volunteer (HV) subjects.

In vivo Neuroimaging Measurements: A GE 3.0T MR system was used to conduct the following neuroimaging studies in a single 60-90 min session: (a) In vivo brain GSH data were acquired using fast spin echo-J-editing and normalized to the peak area of the lactate peak, expressing for the first time a correlation of occipital GSH and ventricular lactate levels in CFS subjects, and 13 age- and sex-matched healthy volunteer (HV) subjects. Specifically, we found no differences between the groups in any phosphate metabolites, measured by in vivo brain GSH data were acquired using fast spin echo-J-editing and normalized to the peak area of the lactate peak, expressing for the first time a correlation of occipital GSH and ventricular lactate levels in CFS subjects, and 13 age- and sex-matched healthy volunteer (HV) subjects.

RESULTS AND DISCUSSION

(a) Ventricular CSF Lactate: Mean ventricular CSF lactate, measured by 1H MRSi and expressed in institutional units (i.u.), differed significantly between the CFS, MDD and HV groups (F$_{2,35} = 16.78$, p < .001) (Fig. 1). Elevated ventricular lactate levels were also found in MDD compared to HV (p = .009). There was a weak trend toward higher ventricular lactate in CFS compared to MDD (p = .114). This finding represents a third independent replication of our previous observation of increased CSF lactate in CFS, suggesting this to be a feature of the disorder.

(b) Cortical GSH: Comparisons of occipital GSH levels measured by J-editing and normalized to the peak area of the unsuppressed voxel tissue water (W) revealed a main effect of diagnostic group (F$_{2,35} = 15.93$, p < .001), which post hoc testing attributed to reductions of GSH/W (Fig. 2, bottom) in both CFS (p < .001) and MDD (p = .004) compared to HV. There was a non-significant trend toward lower GSH/W in HV compared to MDD (p = .086). To our knowledge, this is the first study to document in vivo cortical GSH deficits in CFS (a 36% decrease) and in MDD (a 21% decrease), which supports a role for increased oxidative stress in both disorders, and provides a compelling rationale for investigating treatment strategies, such as supplementation with N-acetylcyesteine (NAC) or other synthetic precursors, that can restore cortical GSH reserves to potentially lower oxidative stress.

(c) Regional Cerebral Blood Flow (rCBF): Following intensity and morphological normalization and statistical analysis using the Statistical Parametric Mapping (SPM) software, Version 5, we found significantly different ASL-derived CBF values at the uncorrected significance level of .001 in two brain regions. The CFS group had lower rCBF values in the left anterior cingulate cortex (p = .039) and in the right lingual (p = .016) regions compared to the HV group. In addition, there was a trend toward lower rCBF in the left anterior cingulate cortex in MDD subjects compared to HV (p = .08). There were no significant differences in rCBF values between CFS and MDD in any brain region. These results are consistent with prior reports of decreased rCBF in CFS [6,7].

(d) High-Energy Phosphates: We found no differences between the groups in any phosphate metabolites, suggesting that mitochondrial dysfunction may not be a key factor in our reported lactate elevations in CFS.

(e) Correlations among Lactate, GSH and Clinical Variables: In exploratory correlational analyses, we found ventricular lactate and cortical GSH to correlate inversely (Fig. 3), not only with each other (r = -.545; p < .001), but also with several key indices of physical health and disability across all participants, further supporting a role for oxidative stress the pathophysiology of CFS and MDD.

CONCLUSION

Our finding of a significant 36% cortical GSH deficit in CFS has provided both mechanistic and face validity for an emerging oxidative stress model of this poorly understood illness, documenting for the first time a significant decrease in antioxidant capacity in living brain.

REFERENCES