Potential of MREIT Conductivity Imaging to Evaluate Brain Abscess: In Vivo Canine Model

Hyung Joong Kim1, Woo Chul Jeong1, Young Tae Kim1, Chae Young Lim2, Hee Myung Park2, and Eung Je Woo1

1Biomedical Engineering, Kyung Hee University, Yongin, Gyeonggi, Korea, Republic of; 2Veterinary-Internal Medicine, Konkuk University, Seoul, Korea, Republic of

Purpose

The purpose of this study is to show the potential of in vivo MREIT conductivity imaging as a new clinically useful bio-imaging modality through animal disease model experiments.

Materials and Methods

Brain abscess was induced in 10 healthy beagles (2-3 years old, weighing 8-15 kg) by a direct inoculation method. The organism used to produce the abscess was Staphylococcus pseudintermedius from the cultured blood sample of the dog with endocarditis. To prevent dribbling during experiments, we injected 0.1 mg/kg of atropine sulfate. Ten minutes later, we anesthetized the dogs with intramuscular injection of 0.2 ml/kg Tiletamine and Zolazepam (Zoletil 50, Virbac, France). After clipping hair at four locations (dorsal, ventral and bilateral surfaces) on the head, we attached four carbon-hydrogel electrodes and placed the dog inside the bore of our 3 T MRI scanner (Magnum3, Medinus, Korea). The experimental protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of Konkuk University, Seoul, Korea.

Inside the shield room, we intubated the dog using an endotracheal tube and began the general anesthesia using a veterinary anesthesia machine system (VME, MATRX, USA). We used 2% isoflurane mixed with oxygen at 800 ml/min flow rate. Ventilation was machine-controlled by using a ventilator (M-2002, Hallowell EMC, USA) with the respiration rate of 15 bpm and tidal volume of 200 ml. Using our custom-designed MREIT current source, we injected the first current I_1 between one opposing pair of electrodes. The injection current amplitude was 5 mA with the total pulse width of 81 ms. The multi-echo pulse sequence was used with TR/TE = 900/30 ms, 3 echoes, FOV = 180×180 mm², slice thickness = 3 mm, NEX = 16, matrix size = 128×128, number of slices = 8, and total imaging time = 120 min. After acquiring the first magnetic flux density (B_z) data set for I_1, the second injection current I_2 with the same amplitude and pulse width was injected through the other pair of opposing electrodes to obtain the second data set. We used the single-step harmonic B_z algorithm implemented in CoReHA (conductivity reconstructor using harmonic algorithms) for multi-slice conductivity image reconstructions.

Results and Discussion

Figure 1 shows typical MR magnitude (a), reconstructed conductivity (b), and color-coded conductivity images of a canine head at 12 hrs after induction of brain abscess. Figure 2(a), (b), and (c) are contrast-enhanced T1 weighted MR, T2 weighted MR and reconstructed conductivity images of the canine brain before and after induction of brain abscess. Compared with the conventional MR image technique, the present MREIT technique shows variation of conductivity contrast pattern corresponding to the degree of malignancy of brain abscess.

Figure 3 represents the results of three in vivo imaging experiments. The relative conductivity contrast ratio (%) $rCCR$ of brain abscess significantly increased up to 12 hours after induction of abscess. However, the $rCCR$ was slowly decreased after 18 hours. Different time-course variations of $rCCR$ values between normal and abscess regions stem from the fact that the reconstructed conductivity value of abscess region reflects the tissue condition according to the inflammatory cell infiltration, edema, hemorrhage, and necrosis.

Conclusion

In this study, we performed in vivo disease model animal experiments to validate the MREIT technique in terms of its capability to produce conductivity contrast pattern corresponding to the degree of malignancy of brain abscess. Reconstructed conductivity images do not provide absolute conductivity values but show unique contrast between normal and abnormal tissues compared with conventional MR imaging techniques. We expect that this kind of in vivo animal imaging can provide conductivity information of tissues in situ to be utilized in diagnosis and also modeling studies.

References