Combined coronary and late-enhanced viability imaging using 3.0T whole-heart coronary MRA for delineation of the etiology of left ventricular dysfunction

Qi Yang1, Kuncheng Li1, Xiangying Du1, Xiaoming Bi2, Yu Zhang1, Jing An3, and Debiao Li4

1Xuanwu Hospital, Beijing, China, People's Republic of; 2Siemens Medical Solutions USA; 3Siemens Healthcare, MR Collaboration NE Asia; 4Cedars-Sinai Medical Center and UCLA

Introduction: The major advantage of 3.0T whole-heart coronary MRA (CMRA) using a continuous gadolinium infusion is to combine lumenographic information and 3D myocardial viability in the same settings with patterns similar to those obtained by 2D-LGE (late Gd-enhanced) technique1,2. This suggests a potential of this technique to assist in recognizing the etiology of patients with left ventricular dysfunction (LVD) which is essential for the risk stratification and treatment selection.

Purpose: To evaluate the feasibility and diagnostic accuracy of using combined coronary and delayed enhancement (DE) by 3.0T CMRA for determining the etiology of LVD.

Methods: Forty-two consecutive patients (29 males, 56±15 years) with LVD (ejection fraction: 39±12%) of unknown etiology underwent 3.0T coronary MRA (MAGNETOM Tim Trio, Siemens), 2D-LGE and CA. For coronary MRA image acquisition an ECG-triggered, navigator-gated, inversion-recovery prepared, segmented gradient-echo sequence was used. Imaging parameters included: voxel size 0.55x0.55x0.65 mm3 (interpolated from 1.1x1.1x1.3 mm3), TR/TE = 3.3/1.5 msec, flip angle = 20°, bandwidth = 700 Hz/pixel, TI=200 msec. Contrast agent (0.15 mmol/kg body weight, MultiHance, Bracco, Italy) was intravenously administered at a rate of 0.3 ml/sec. Patients were classified into four groups according to coronary artery disease (CAD) by CA and 2D-LGE patterns. Group 1: definite ischaemic LVD, patients with CAD and transmural or sub-endocardial 2D-LGE; group 2: non-ischaemic LVD, patients without CAD by CA and with no/atypical 2D-LGE; group 3: likely ischaemic LVD, patients with transmural 2D- but no CAD; group 4: likely ischaemic LVD, patients with CAD but no 2D-LGE. The diagnostic accuracy of coronary and DE on segmental basis was evaluated using CA and 2D-LGE as reference standards. Agreement between the four groups of patients was assessed using k-statistic.

Results: 3.0T CMRA was successfully completed in 39 of 42 (93%) patients. On per-patient basis, combined coronary and DE by 3.0T CMRA had excellent agreement with CA/2D-LGE to classify patients into the same four groups (k=0.86; P<0.01). Sensitivity, specificity and accuracy of 3.0T CMRA were 95.7, 93.8 and 94.8%, respectively for detecting patients with definite (group 1) or likely (groups 3 and 4) ischaemic LVD. Example images is shown in Fig 1.

Conclusion: The present study demonstrates that combined coronary and DE by 3.0T CMRA can identify the underlying etiology of patients with LVD in a manner much similar to 2D-LGE and CA. In this setting, integrating coronary and DE may be extremely useful for better understanding of the etiology of LVD.


Fig. 1: 3T whole-heart CMRA of a 69 year-old ischaemic LVD patient. MIP and VR images (a,b) detects a significant LAD stenosis (arrow head) correlation with CA (c). Reformatted CMRA images (d,e) shows transmural LGE (black arrow) correlated well with 2D PSIR images (f,g)