DTI of the Inter-hemispheric Connectivities in Neonates with Transposition of the Great Arteries Undergoing Cardiopulmonary Bypass Surgery.

Malek I Makki1, Rabia Liamlahi2, Hitendu Dave1, Bea Latal3, Vera Bernet2, Janina Scheer2, Klaudija Batinic2, Cornelia Hagmann1, and Walter Knirsch2
1MRI Research, University Children Hospital Zurich, Zurich, Switzerland, 2Cardiology, University Children Hospital Zurich, 3Congenital Cardiovascular Surgery, University Children Hospital Zurich, 4Child Development, University Children Hospital Zurich, 5Pediatrics Intensive Care, University Children Hospital Zurich, 6Diagnostic Imaging, University Children Hospital Zurich, 7University Hospital Zurich

Introduction: The basic structure of the corpus-callosum is completed by 18–20 weeks’ gestation, but continues to increase in size over the third trimester [1]. It grows dramatically from anterior to posterior over the first 2 postnatal years [2] while preoligodendrocytes are thought to appear at the extremities e.g. the genu (GCC) and splenium (SCC) [3]. Little is known on the characterization and the development of this structure around time of birth for full-term neonates with d-transposition of the great arteries (d-TGA). The aims of this study were to investigate post-surgical WM microstructural development in the inter-hemispheric brain connectivity in neonates with d-TGA following cardiopulmonary bypass surgery (CPB) and compare it to age matched healthy neonates.

Methods: Fifteen patients with d-TGA underwent both pre and post surgical DTI exams. Post-conceptional age ranged from 37 weeks to 41 weeks, with mean value of 39 weeks (±1). Pre-surgical MRI (Pre) was carried out around 8 days (±6) after birth. The post-surgical MRI (Post) was performed about 21 days (±8) following the 1st exam. Ten healthy term neonates were recruited and served as control group (HC). The institutional ethical committee approved this study and informed consent was obtained from their parents. The DTI sequence was performed on 3T scanner using 35 gradient directions with a b-value of 700 s/mm². Two observers manually delineated the GCC and SCC on direction color encoded maps over at least 3 adjacent slices and measured the parallel diffusion (Eₐ), perpendicular diffusion (E₂₃), ADC, and FA. The between-groups statistical comparison (pre-surgery, post-surgery, healthy-controls) was carried out separately for each structure with a post-hoc repeated measures with multiple analysis of covariance using post-conceptional age at MRI as covariate.

Results: General linear model analysis revealed significant differences in E₂₃ (GCC: p = 0.01; SCC: p = 0.26), ADC (GCC: p = 0.002; SCC: p = 0.05) and FA (GCC: p = 0.006; SCC: p = 0.021). Pre-surgical MRI (Pre) was significantly lower E₂₃ (p = 0.012), higher ADC (p = 0.0012) and lower FA (p = 0.039) in the SCC. The pre-surgical group had a significantly lower FA (p=0.033) compared to the HC and all other indices were not significantly different. With regard of the post-surgical group, the GCC had a significantly lower E₂₃ (p = 0.013), higher ADC (p = 0.012) and lower FA (p=0.039) when compared to the HC (Figure 1). In the SCC we did not measure any significant difference between these 2 groups. Post-surgery vs pre-surgery analysis demonstrated abnormal increase in both E₂₃ and ADC with a simultaneous decrease in FA in both the GCC and SCC despite the 20 days average time that separated the 2 exams.

Discussion: We found disruption in the microstructural organization of the genu WM as reflected by higher E₂₃ in patients with d-TGA compared to HC. Modifications of the intracellular or extracellular spaces, as well as the abnormalities contributed by astrocytic activation may influence the perpendicular component of water diffusivity. The disruption of myelin sheath has been found to increase perpendicular diffusion without affecting parallel diffusion [4,5]. Furthermore, we observed an increase in both ADC and E₂₃ in GCC of d-TGA patients before and after surgery suggestive of delayed maturation of the anterior callosal WM in these patients compared to HC neonates. Together all these differences in the GCC rather than the SCC of neonates with d-TGA indicated that frontal WM microstructures were more immature than that of HC neonates and it is likely that this was an ongoing process that started at the fetal level and not affected by the surgical procedure.