Fully-Refocused Spatiotemporally-Encoded MRI: Robust MR Imaging in the presence of metallic implants
Noam Ben-Eliezer1, Eddy Solomon2, Elad Harel1, Nava Nevo3, and Lucio Frydman2
1Center for Biomedical Imaging, New-York University, New-York, NY, United States, 2Chemical-Physics, Weizmann Institute of Science, Rehovot, Israel, 3Chemistry, Northwestern University, Evanston, IL, United States, 4Biological-Regulation, Weizmann Institute of Science, Rehovot, Israel

Introduction

Many orthopedic fractures and joint problems require treatments using metallic implants. The use of MRI as a postsurgical surgery diagnosis tool, however, is hindered in such cases owing to the strong field distortions caused by these implants, manifested by severe signal loss / pile-up, and distortion artifacts. Various techniques, available for overcoming this challenge, include: spin-echoes, constant-time phase-encoding approaches, UTE sequences [1], view-angle-tilting [2], multi- RF offset acquisitions [3], and field-map based post-processing algorithms. The combination of these provides diagnostic capabilities under conditions that until recent years were considered overtly challenging. Notwithstanding, the existence of metallic objects in the target FOV is still an open challenge in MRI. In recent years a conceptually different encoding approach has emerged, based on progressive refocusing in the image spatial (rather than the k-space) domain using quadratic phase functions. The ensuing spatiotemporal-encoding (SPEN) technique was shown to offer significantly higher robustness against B\textsubscript{0} field inhomogeneities [4-6]. Particularly effective is its ability to implement a unique time-dependent Spin-Echo which fully refocuses all static T\textsubscript{2}* effects for each and every time point – and not just at a single instant as in k-domain acquisitions. In view of this promising feature the present work demonstrates SPEN’s ability to overcome extreme ΔB\textsubscript{0} distributions arising near metallic implants, where sufficiently long T\textsubscript{2}* values exist.

Methods

Experiments were done on a Varian Inova 7T vertical scanner. Cartesian and radial multi-shot SPEN protocols were tested on an in-vivo mouse brain attached with a 3mm thick Titanium disc. SPEN sequences used a 180° frequency-swept spin-echo pulse and were processed using the super-resolved SPEN reconstruction algorithm presented in [7]. Images were subsequently compared with conventional (k-space encoded) Spin-Echo MRI analogues, using identical bandwidth and timing conditions. Both multi-slice and pure 3D scans were performed covering a FOV of 20x20x5 mm3. Other imaging parameters were: SE-EPI [slice-thickness=1.0 mm, gap=0 mm, matrix size=70x70, TE=6.3 ms, TR=100 ms, overall T\textsubscript{acq}=0.6 sec]; SPEN MRI [180° pulse sweep rate=40 kHz/\textmu s, slice-thickness=0.75 mm, gap=0.25 mm, matrix size=70x70, TE=[4..9] ms, TR=100 ms, overall T\textsubscript{acq}=0.6 sec].

Results

Figure 1 shows an example of the quality enhancement afforded by SPEN for in-vivo Cartesian imaging of a mouse brain. Top: k-space encoded 2D Spin-Echo MRI. Bottom: Spatiotemporally-encoded (SPEN) images.

Discussion

Originally developed as a general method for single-shot 2D NMR/MRI, the present study clearly highlights SPEN’s potential in the context of multi-shot imaging. Similar techniques have been previously investigated by Kunz, Pipe, Wong and Shen; This work extends those investigations by exploiting a hitherto untapped resource, associated to the self-refocusing capabilities of SPEN MRI. By equating the bandwidth and duration of SPEN’s excitation and acquisition processes, a unique spin-echo is generated, which refocuses the T\textsubscript{2}* dephasing throughout the entire data acquisition process without the need for any a priori information about the field’s distribution. On-going research continues to explore the use of multi-stationary-points and parallel-receive/transmit SPEN protocols in the expectation that these will facilitate high field human investigations along the lines hereby described.

References

Financial support: Israel Science Foundation (ISF 447/09), Minerva Foundation (Project 710587); Helen Kimmel Award for Innovative Investigation.