Mapping in vivo Tumor Oxygenation within Viable Tumor using tritium MRI and Multispectral Analysis

Yunzhou Shi1, David Finkle2, Franklin Fele3, Jed Ross1, Maj Hedehus4, Nicholas Van Bruggen4, Suzanna Clark2, Rayna Venook2, Sarajane Ross2, and Richard Carano1

1Biomedical Imaging, Genentech Inc.(Roche group), South San Francisco, CA, United States, 2Translational Oncology, Genentech Inc.(Roche group), South San Francisco, CA, United States, 3Pathology, Genentech Inc.(Roche group), South San Francisco, CA, United States

Introduction

Hypoxia in tumors represents a compelling imaging target, given that it has a major role in tumor development and resistance to therapy[1]. The ability to quantitatively measure regional tumor tissue oxygenation in vivo can provide valuable information about tumor physiology to aid in the development and monitoring of potential therapies. tritium magnetic resonance imaging(tritium MRI) oximetry, using perfluorocarbon emulsions(PFCs) as an imaging contrast agent, is a noninvasive method that has shown promise for quantifying the partial pressure of oxygen(pO2) within tumors[2,3]. However, tumor heterogeneity complicates the quantification of tissue pO2 due to variability in the distribution of the contrast agent and the inclusion of non-viable tumor regions in whole tumor images. To address these issues, we developed novel approach that combines tritium MRI T1 mapping with diffusion-based multispectral K-means(KM) clustering to quantify pO2 in specific tumor tissue populations. This study demonstrates that pO2 measurements can be restricted to the viable tumor and that the necrotic tissue classes contribute erroneous data to whole-tumor estimates of the pO2 response during a breathing gas challenge experiment. This approach provides a means to measure pO2 within the viable tumor and address the issue of tumor heterogeneity that complicates pO2 tumor imaging.

Methods

MR experiments: Experiments were performed with a 9.4T Agilent MRI system equipped with a 1H/19F 10 mm surface coil (Agilent Technologies Inc.). 1-mm-thick coronal slices were acquired (n = 12, FOV = 25.6×25.6 mm, matrix = 64×64×64). A diffusion-weighted fast spin echo multislice (FSEMS) sequence was used to calculate an apparent diffusion coefficient (ADC) map (6 b-values ranging from 270 to 1000 s/mm2, TR = 3s, ETL = 4, NA = 2, Δ = 30ms, δ = 3.3ms). A spin echo multislice (SEMS) sequence was used to generate T1 and M0 maps (TE = 5,26,47,68 ms, TR = 3s, NA = 1). A T1-weighted SEMS sequence was used to obtain a fluorine anatomical reference image. A 19F single-shot, inversion recovery FSEMS sequence was employed to generate spatial maps of T1 (FSEMS, TI = 0.1,0.3,0.5,0.6,0.7,0.9,1,1.2,1.8,2.5s, TR = 6s, ESP = 4.1ms, ET = 32, NA = 32, matrix = 32×32, zero-filled to 64×64). Multispectral analysis of 1H data was used for tissue segmentation. K-means clustering was performed using the ADC, proton density and T1 maps as previously described [4,5]. The K-means algorithm segmented the tumors into four tissue classes: viable tumor tissue, sub-cutaneous adipose tissue, and two necrotic classes [4,5]. The tissue class map was combined with the 1H T1 map to estimate pO2 in the four tissue classes.

Samples and animals: The Institutional Animal Care and Use Committee (IACUC) at Genentech approved all animal protocols. Athymic nude mice (n=20) were inoculated subcutaneously on the hind limb with HM7 colorectal cancer cells. The imaging contrast agents, PFCs containing 60 w/v% perfluoro-15-crown-5-ether (Synequest Inc.) were intravenously injected into mice(400 μL/dose) at 48 h and 24 h prior to MRI, respectively. During the experiment, T1 maps were acquired at normoxia(21% O2) and hyperoxia(carbogen: 95% O2, 5% CO2) conditions sequentially by changing the breathing gas. A 10 min gap was employed between the two acquisitions to allow the oxygenation to reach equilibrium, monitored by the O2 system(LEA Medizintechnik GmbH Inc.). A calibration curve (R2 vs O2) was constructed by measuring the T1 of PFCs at known concentrations of dissolved oxygen.

Results and Discussions

PFC uptake was significant, but variable within the tumor following intravenous PFC injection (Fig.1A). Strong 19F signal was visualized within some areas of the viable tissue class (Fig.1B) and is consistent with the presence of large vessels in these regions. In addition, strong 19F uptake was observed in the low-T2 necrosis class (Fig.1B, green arrows), where leakage is likely due to hemorrhage [4]. This class has been found histologically to contain intact red blood cells that shorten the T2 and is likely an area of recent or active hemorrhage [4]. Under breathing gas challenge, there was a heterogeneous response within the tumor (Fig. 1D). Statistical analysis revealed that the viable tumor class (paired t-test, p=0.018), adipose tissue class (p<0.01) and low-T2 necrosis class (p<0.01) exhibited a significant increase in pO2 in response to hyperoxia challenge (Fig.2). The increase in pO2 for the low-T2 necrosis class provided further evidence of active hemorrhage. The high-ADC necrosis class showed no change in pO2 (p=0.10), likely due to the acellular, “cyst-like” nature of the region [4]. The differing sensitivity in response to the gas challenge among the four tissue classes is due to the difference in pathophysiological features of the tissues. These results indicate that the inclusion of non-viable tumor tissue regions in whole-tumor estimates of pO2 response can mask or bias the changes of pO2 within the tissue of therapeutic interest (viable tumor). Restricting analysis of tumor oxygenation to the viable tumor is physiologically meaningful and could aid investigations of therapeutic responses.

Conclusions

This is the first study to employ a diffusion-based multispectral tissue segmentation approach to address the complications of tissue heterogeneity in tritium MRI pO2 mapping. This study has demonstrated that this approach can detect tissue dependent oxygenation changes in response to a breathing gas challenge.

References