Choosing the best animal model – preclinical cartilage and meniscal studies.

Lisa A. Fortier, DVM, PhD
American College of Veterinary Surgeons
laf4@cornell.edu

Disclosures: Kensey Nash Board of Scientific Advisors, Arthrex consultant

Choosing an Animal Model - Cartilage

- Drug, neutaceutical
 - Rat, mouse, rabbit, dog
- Device or product to repair/replace cartilage

Foundation

- Products intended to repair or replace knee cartilage
- Pre-clinical animal models
 - excluding non-human primates
 - excluding models for OA

FDA Guidelines

- Goats, sheep, horses are most frequently used
- Choose after consideration of clinical use
 - Dimensions of product
 - Delivery of product
 - Number of outcome measures desired
 - balance of n and $

Challenges and goals

- All animal models are challenging and expensive
- Ideal animal model should include:
 - Represent intended human clinical use
 - Low cost
 - Assessable outcome measures
 - Known clinical entity, antibodies, probes

Courtesy, MD Markel. From Lu et al, 2005

Anatomic comparisons

Cartilage and subchondral bone – between species comparison

Bone attributes – similarities between animals and humans

Location within location
Biphasic scaffold

- Kensey Nash - Bioresorbable biphasic scaffold
 - β-TCP/PLA - collagen
 - Soak in bone marrow aspirate
 - Advantages: off the shelf, bone + cartilage
 - Disadvantages: increase defect size, few cells

Conclusions

- Small animal species typically perform better than large animal species
- Full thickness defects perform better than partial thickness defects
- Partial thickness defects may be a better model for OA than full thickness defects

Meniscus - sheep as a model

- Anatomic size, cellularity, vascularity, collagen structure
 - sheep, rabbit, human
 - Chevrier JOR 2009
- Compressive biomechanical properties
 - human, bovine, monkey, canine, sheep, and porcine
- Goat?

Considerations for approach

- Medial vs. lateral
- What are you trying to model?
Lateral meniscal approach

- takedown and repair of the LCL

Kelly et al, AJSM, 2006
Kelly et al, AJSM 2007
Rodeo, HSS

Excise and Replace the lateral meniscus

Rodeo, HSS

Going medial - what NOT to do

- Bone block approach if you need to suture meniscus
- Transect MFPL
- Bilateral
- ? Epidural

Going medial - what NOT to do

consultantlive.com

1. Medial skin incision
2. Lateral parapatellar arthrotomy, patella luxated medially

1. Medial skin incision
2. Lateral parapatellar arthrotomy, patella luxated medially

Practice, practice, practice

Roshan Shah MD1, Rolf Modesto DVM1, Robert Mauck PhD2, Thomas Schaer VMD3

The University of Pennsylvania
1 Department of Orthopaedic Surgery
2 McKay Orthopaedic Research Laboratory
3 School of Veterinary Medicine New Bolton Center

Many Species. One Medicine.™
Thoughts for all animal models

• Age of skeletal maturity is critical
 – >2 years of age is general guideline
• Dimensions of critical size defect must be known
• Choice of full or partial thickness defects
• Importance of validating that subchondral has not been penetrated
 – very difficult for smaller animals
• Difficult to ensure removal of calcified cartilage

Equine cartilage structure with age

7 months 18 months 24 months

IGF-I

Relative disadvantages

• Goats
 • Caseous Lymphadenitis – Coryne pseudotB
 • Behavior
 • Low cartilage thickness

• Sheep
 • Scrapie (TSE)
 • Shoulder ramming
 • Lowest cartilage thickness

• Horses
 • Cost
 • Immediate loading (MFC)
 • Emotive