INTRODUCTION: Hyperpolarized (HP) 13C MR studies of the transgenic model of prostate cancer (TRAMP) model have demonstrated that $[1-^{13}]$Cpyruvate can detect both local and metastatic prostate cancer, provide an assessment of pathologic grade [3], and early response to therapy [4]. Correlation of HP 13C MR findings with pathologic stage, proliferation and hypoxia and how these correlate with current state-of-the-art multi-parametric imaging of prostate cancer is critical for understanding how well this model recapitulates the human situation and how HP 13C MR might best be integrated into a clinical MR staging exam of prostate cancer. The combination of high field (14T) micro-imaging systems and DNP polarization provides the sensitivity necessary to obtain highly spatially and temporally resolved anatomic and functional imaging data for correlation with the HP 13C MR data, pathologic data and immunohistochemical findings. The goal of this study was to develop and implement a 14T multi-parametric imaging protocol and compare the MR findings to histopathology and immunohistochemistry of normal and TRAMP mice at various stages of cancer progression in order to better understand the relationship between metabolism, pathology, diffusion, perfusion, hypoxia and proliferation.

METHODS: $[1-^{13}]$Cpyruvate (14.2M) and 13C urea (6.4M) were prepared using the OX063 radical and co-polarized using an Oxford Hypersense™ [5]. The experiments were performed on a 14T, 600WB micro-imaging spectrometer equipped with 100G/cm gradients (Varian Instruments). In vivo MR and ex vivo histopathology studies were performed on both normal (n = 3) and TRAMP (n = 3) mice. Multi-slice T_2-weighted anatomic images were acquired using a respiratory-gated spin-echo sequence with a $T_E=20ms$, $T_R=1200ms$, fat saturation, FOV 40 x 40 mm, 256 x 256 points (RO x PE). Diffusion-weighted images were acquired using a spin-echo based sequence with similar parameters, 4 B-values (102, 305, 406, and 508) and apparent diffusion coefficient maps were calculated from fits of this data to a mono-exponential. An echo planar imaging (EPI) based pulse sequence was constructed using frequency-specific pulses ($f = $pyruvate, lactate or urea and $n,N=12$) to generate a 3D image for each metabolite with an acquisition time of approximately 180ms.

RESULTS AND DISCUSSION: Apparent diffusion coefficient (ADC) values are reduced 55% in the TRAMP tumors as compared to normal mouse prostate (0.68 +/- 0.46 x 10^-3 mm^2/s v. 1.47 ± 0.59 x 10^-3 mm^2/s, P<0.005 Figure 1), which is similar to the differences observed between human benign and malignant prostate tissues [6]. Representative 1H T_2-weighted images with overlaid HP 13C 3D EPI images after injection of co-polarized $[1-^{13}]$Cpyruvate and 13C urea (Figure 1) demonstrate the distribution of 13C urea and $[1-^{13}]$C lactate/$[1-^{13}]$Cpyruvate in a normal (Figure 1a) and TRAMP mouse (Figure 1b). The average lactate-to-pyruvate ratio was significantly increased in TRAMP tumors relative to normal prostate (2.1 ± 1.7 v. 0.38 ± 0.13, P<0.005) similar to previously published results for moderate to late stage TRAMP tumors [3]. TRAMP tumors exhibited a significant increase in uptake of total HP pyruvate derived carbon (1.23 ± 0.89 AU v. 0.86 ± 0.22 AU, P<0.001). The perfusion of the tumor was slightly elevated relative to normal prostate tissue (0.77 ± 0.51 AU v. 0.66 ± 0.15 AU, P=0.03) though this had a large range, most likely a result of heterogeneous perfusion in the tumor. When comparing hyperpolarized data to histopathology, regions of necrosis demonstrated lack of HP signal (both HP urea, and HP pyruvate metabolites). At pathology, the late stage TRAMP tumors studied were >98% poorly differentiated as compared to 100% well-differentiation in normal prostate tissue (Figure 2). Normal prostate tissue stained 1% for KI-67 as compared to 7 to 8% for the non-invasive characterization of metabolism in the TRAMP model.

Figure 1. Representative T_2-weighted images, ratio maps of $[1-^{13}]$C lactate to $[1-^{13}]$Cpyruvate, hyperpolarized 13C-Urea distribution and apparent diffusion coefficient (ADC) maps are shown for a normal prostate (a) and late stage TRAMP tumor (b).

Figure 2. Representative histopathology from a normal mouse prostate and TRAMP tumor. High densities of poorly differentiated cells, proliferation and hypoxia are observed in the mid-late stage prostate tumor.

CONCLUSIONS: This study demonstrates the feasibility of acquiring high spatial resolution 14T multi-parametric MR data for correlation with both HP 13C MR data and histopathology. Similar to the human situation, ADC is reduced in TRAMP tumors relative to normal prostate. Both increased proliferation and hypoxia were related to increased uptake of pyruvate and lactate-to-pyruvate ratio. Late stage TRAMP tumors had overall increased perfusion based on HP 13C urea relative to the normal prostate. However, perfusion was heterogeneous within the tumor and there were regions of low perfusion with high metabolic activity. Ongoing studies include investigation of earlier stage TRAMP tumors to capture changes in hypoxia and proliferation as related to both hyperpolarized and standard MR parameters of early pathologic changes.
