MRI Characterization of Pathophysiological Changes in a Mouse Model of Acute Kidney Injury (AKI)

A. Pohlmann1, L. Marko2,3, B. Wagenhaus1, U. Hoff4, E. Seeliger5, D. N. Mueller5,6, and T. Niendorf1

1Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany, 2Max Delbrueck Center for Molecular Medicine, Berlin, Germany, 3Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany, 4Clinic for Nephrology, Charité University Medicine, Berlin, Germany, 5Institute of Vegetative Physiology, Charité University Medicine, Berlin, Germany

Introduction: Renal medullary hypoperfusion and hypoxia play a key role in acute kidney injury (AKI). The incidence of AKI in hospitalized patients shows an increase of approximately 11% per year. [1] A widely accepted hypothesis is that AKI of various origins share a common link in the pathophysiological chain of events that ultimately leads to AKI: Imbalance between renal medullary oxygen delivery and oxygen demand. Although a variety of methods to assess renal hemodynamics and oxygenation in vivo are established (e.g. blood sampling, ultrasound flow probes, Laser-Doppler probes, fluorescence-quenching probes), these invasive measurements are limited to short time periods (one experiment) and/or probing only a very small region of the kidney. MRI offers the possibility to assess tissue oxygenation and oedema (via T2* and T2 contrast respectively) for the whole kidneys, repeatedly and non-invasively. The objective of this work was to demonstrate the feasibility of characterizing alterations in renal hemodynamics and oxygenation under (patho)physiological conditions such as renal ischemia/reperfusion injury (I-R model).

Materials and Methods: Animal models. We imaged 4 male BL6 mice (weight approx. 20g) in-vivo under isoflurane anesthesia (1.0-2.5% in 50% air / 50% O2): one naive animal (M1), one animal (M2) 6hrs after a 30-minute ischemia-reperfusion, one animal naive, 6hrs and 24hrs after a severe 30-minute I-R (M3), and one animal 6hrs and 24hrs after a mild 17.5-minute I-R (M4). Experiments complied fully with local institutional ethical and legal requirements. MR Imaging. Coronal T2w images and T2* images with different echo times were acquired on a 9.4T Bruker Biospec (Ettlingen, Germany) using a four-element mouse cardiac optimized surface coil array. T2w imaging: RARE (factor 8), TE = 41ms, FOV/mtx/res = 35x30mm/384x196/0.09x0.15mm, 2 slices of 0.3mm thickness. T2*w mapping: MGE, TE/FA = 3,7,11, 15,19ms/30°, FOV/mtx/res = 35x30mm/256x192/0.14x0.16mm, 2 slices of 0.34mm thickness. TR for both sequences was 900-1200ms (resp. triggered, RARE used flip-back) Analysis. MGE data were converted to T2*w-maps using the Bruker ISA tool.

Results and Discussion: T2w and T2*w images of naïve kidneys and the untouched reference kidneys after unilateral I-R showed the same contrast, while the kidneys that underwent I-R all showed strong changes of contrast in the cortex and medulla (Fig.1): the medulla became darker (T2 decrease), and the cortex brighter (T2 increase). Even after mild I-R clear changes were observed, which differed from those after a severe I-R and particularly highlighted the cortex-medulla interface. T2*w-mapping showed equally dramatic changes in a more quantitative manner as demonstrated in Fig.2.

Conclusions: Our results suggest that in-vivo MRI characterization of pathophysiological changes in mouse model of AKI is not only feasible but also a rather sensitive method. The future objective of our work is to study renal hemodynamics and oxygenation by means of a new multi-modality approach that combines comprehensive MRI techniques with modern invasive measurements under physiological conditions and in a model of ischemia/reperfusion injury.