Signal Distribution in Dissolved 129Xe MR Images of Healthy Subjects and Subjects with Chronic Obstructive Pulmonary Disease


Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Medicine, Duke University Medical Center, Durham, NC, United States; GE Healthcare, Amersham, United Kingdom; Department of Radiology, Duke University Medical Center, Durham, NC, United States

Introduction: When taken up by the pulmonary tissues, dissolved hyperpolarized (HP) 129Xe is readily distinguished from gaseous 129Xe in the airways by a greater than 300 ppm downfield chemical shift [1]. Moreover, it was recently demonstrated that single-breath MR images of human lungs can be acquired from dissolved 129Xe [2,3]. Because the SNR of these images depends on gas uptake, dissolved 129Xe may provide a unique method of visualizing the distribution of gas exchange in both normal and diseased lungs. Before dissolved 129Xe MRI can be used diagnostically, however, it is necessary to understand the factors that determine the signal intensity distribution in these images. To this end, we investigate the spatial distribution of dissolved 129Xe in healthy subjects and subjects with chronic obstructive pulmonary disease (COPD).

Methods: Studies were performed during a GE Healthcare sponsored, Phase 1 clinical trial for 129Xe MRI. Work was conducted at a GE Healthcare IND and approved by our IRB. Subjects consisted of 6 individuals diagnosed with chronic obstructive pulmonary disease (COPD) and 6 age-matched controls (AMC). Images were obtained at 1.5 T using a GE EXCITE 1.5-T MR scanner and a 17.66-MHz quadrature vest-coil (Clinical MR Solutions, Brookfield, WI). Subjects received 1-L doses of isotopically enriched Xe (33% 129Xe) polarized to 6-9% using 2 prototype GE polarizers. All images were acquired with subjects in the supine position during a 16-s breath-hold period using a 3D radial sequence (τ = 1.571, matrix = 32 × 32 × 32, FOV = 40 × 40 × 40 cm², TR/TE = 1.9/0.9 ms, BW = 15.6 kHz, α = 8°) that selectively excited the dissolved 129Xe resonance.

Results and Discussion: As was reported previously [2,3], healthy subjects displayed gravity-dependent SNR gradients, with signal increasing in the anterior (gravitationally nondependent) to posterior (dependent) direction. This trend results from underlying gravity-dependent gradients in ventilation [2,4], with additional contributions arising from gradients in tissue density [5,6] and alveolar surface-to-volume ratio [7,8]. However, the trend is reversed in the most dependent portions of the lungs, likely due to reduced ventilation in the lung periphery [9]. Substantial isogravitational SNR heterogeneity, as measured by the coefficient of variation (CV) of a given slice, is also observed in the dissolved 129Xe images of healthy subjects. This heterogeneity can be attributed to a combination of poor peripheral ventilation [9] and isogravitational heterogeneity in pulmonary perfusion [10]. However, the slice-by-slice CV of SNR also demonstrates a degree of directionality, with a maximum being observed in the central portions of the lungs. Additionally, significant differences in dissolved 129Xe SNR and CV are observed between the right and left lungs. Similar left-right differences are not observed in corresponding ventilation images, suggesting that gravitational tissue compression by the heart [11] plays a role in determining the distribution of the dissolved 129Xe signal. However, the gravitational and left-right patterns observed in AMC subjects may be due to reduced ventilation in the lung periphery [9].

Conclusions: Dissolved 129Xe images can be obtained from both healthy individuals and subjects with COPD Images from healthy individuals display gravitational and isogravitational heterogeneity that likely reflects heterogeneity in the underlying pulmonary physiology. Differences in signal intensity and heterogeneity are also observed between the right and left lungs, which may be due to tissue compression by the heart. These patterns are reduced in subjects with COPD suggesting the dissolved 129Xe is sensitive to disease-associated physiological changes.


Acknowledgements: GE Healthcare; Center for In Vivo Microscopy; P41 RR005959