Could Lipids Contribute to the Exchange-Induced Resonance Frequency Contrast in Brain Tissue?

K. Shmueli1, S. J. Dodd2, C. Wunder1, and J. H. Duyn1

1Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States, 2Functional and Molecular Metabolism Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States, 3Traffic, Signaling and Delivery Laboratory, Curie Institute, France

Introduction: Gradient-echo frequency images (directly proportional to the signal phase) are increasingly utilized because they provide high contrast that is complementary to conventional magnitude image contrast. Magnetic susceptibility is widely postulated to contribute to tissue frequency contrast but recent measurements in fixed human and fresh pig brain tissues [1] show a substantial contribution to white-gray matter (WM-GM) frequency contrast from chemical exchange of protons between water and macromolecules. Studies in protein solutions [2,3] found an exchange-induced frequency shift (Δf) that was directly proportional to the protein concentration. Therefore, fΔ contrast has been attributed to exchanging NH and OH protons on proteins [2]. However, observations that myelin-rich WM has a larger fΔ than GM suggest that there may be a contribution from sites of exchange in myelin, which contains more lipids than proteins [4]. Galectocerebrosides (GC), in particular, are a major lipid component of WM and are 4-fold more abundant in human WM than GM [4,5]. These lipids, whose OH groups are exposed at the surface of cell membranes, cause large magnetization transfer (MT) effects that are most likely due to chemical exchange [6]. Therefore, we tested the hypothesis that GC cause fΔ, using an in-vitro model for WM cell membranes to investigate whether GC could contribute to the WM-GM fΔ contrast in brain tissue.

Methods: To measure any fΔ due to GC (ΔfGC), 6 GC + Palmitoyl oleoyl phosphatidyl choline (POPC) samples (with GC concentrations shown in Figs 1&2) and a POPC control (54 mM) were prepared. POPC was included in all samples because pure GC does not form stable vesicles and a constant 2:1 POPC:GC molar ratio was chosen to approximate the phospholipid to cerebroside ratio in human WM [4-6]. Lipid stock solutions (Avanti Polar Lipids Inc.) in chloroform / methanol were combined to achieve this ratio and the desired GC concentrations. The solvents were removed by slow evaporation under a vacuum. To form multi-lamellar vesicles (MLVs), an authentic model for WM cell membranes, the lipid films were rehydrated in phosphate-buffered saline (PBS) with 5 freeze-thaw cycles as in [6]. As in previous experiments [1,3], 1.4 dioxane was used as a reference chemical whose protons are assumed not to exchange; dioxane (15% v/v) was added to all the lipid samples and the surrounding PBS (see Fig. 1). Because local susceptibility-induced frequency shifts are identical for both water and dioxane protons, fΔ can be measured by subtracting the dioxane frequency from the water frequency in every voxel [1]. Single-slice chemical shift MR imaging (CSI) was performed at constant room temperature using a 600 MHz vertical bore spectrometer (Bruker). CSI had 202 x 202 x 300 μm voxels, matrix size = 124 x 124, spectral width = 10 kHz, 1024 time points, TR = 1 s and flip angle = 45°. The data were band-pass filtered (FWHM 550 Hz) and centered to generate water and dioxane time-domain signals. These were spatially Fourier-transformed, giving water and dioxane magnitude and phase images at each time point. fΔ was obtained from a linear fit of the phase difference between the dioxane and water signals in every voxel over time. Only timepoints having a magnitude signal-to-noise ratio greater than 10 were included in the fit. Regions of interest (ROIs) were drawn in the lipid tubes and surrounding fluid to calculate ΔfGC. Because the fluid had negligible macromolecule content, any apparent fΔ in the fluid ROI was subtracted from the raw fΔ map to correct for inaccurate centering of band-pass filters on the resonance peaks [1].

Results: Fig. 1 shows a map of fΔ and the graph in Fig. 2 shows that ΔfGC increased linearly with GC concentration (at 0.18 ppb/mM). This measured ΔfGC agreed with previously determined WM-GM difference in cerebroside content in human brain [5], suggests that GC could lead to ~5.7 ppb WM-GM fΔ in human brain tissue. This agrees with brain tissue measurements: WM-GM fΔ = 6.3 to 13.5 ppb [1]. The POPC exchange-induced frequency shift was 3.14 ± 0.63 ppb.

Discussion and Conclusions: Here, exchange-induced frequency shifts were measured in MLVs formed from GC and POPC to model WM cell membranes. fΔ increased linearly with GC concentration. The agreement between the positive WM-GM Δf measured in brain tissue and the Δf shift predicted from ΔfGC measured here (together with literature tissue cerebroside concentrations) suggests that GC could account for much of the exchange-induced contrast measured in brain tissue. ΔfGC (0.18 ppb/mM) is about 50 times smaller than fΔ measured in BSA protein solutions (~8-11 ppb/mM) [3], perhaps reflecting the relative molecular sizes of BSA (~67 kg/mol) and GC (~812 g/mol) (or the number of exchanging protons on each macromolecule). The observed increase in fΔ is not attributed to the increase in POPC concentration because two pilot experiments showed that fΔ in POPC was negative and less than fΔ in a GC sample with the same total lipid concentration (and a 2:1 POPC:GC ratio). In contrast to GC, POPC has only one exchangeable OH proton and almost no MT effect [6], suggesting that it does not contribute to chemical exchange processes. To confirm this, and to further understand any contribution of POPC to the fΔ measured here, we plan to measure fΔ over a range of POPC concentrations. The results presented here show that fΔ increased with GC concentration in a WM model and suggest that GC could contribute to the WM-GM exchange-induced frequency contrast in brain tissue. These findings should aid the interpretation of contrast in MR frequency images. GC are essential for axonal myelin membrane integrity [7-8], therefore GC-based fΔ contrast is likely to be applicable to the study of neurological diseases.


Figure 1: fΔ (2 to +3Hz). Numbers are GC concentrations (mM). Air bubbles and tube glass have been masked out

Figure 2: Variation of Exchange-Induced Frequency Shift with [GC]

Error bars are ± ROI standard deviation

y = 0.18x - 1.92

R² = 0.937

ΔfGC (ppb) -4 -3 -2 -1 0 1 2 3 4 5 6 GC Concentration (mM) 0 10 20 30 40 50 60