Rapid, Self-calibrated Parallel Reconstruction for Variable Density Spiral with GROWL

W. Lin1, P. Börnert2, F. Huang1, G. R. Duensing1, and A. Reykowski1

1Invivo Corporation, Philips Healthcare, Gainesville, FL, United States, 2Philips Research Europe, Hamburg, Germany

\textbf{Introduction}

Spiral imaging has been successfully applied to important applications such as cardiac [1] and functional MRI [2]. A major challenge facing spiral MRI is the tradeoff between the desire for a higher imaging speed with a smaller number of interleaves, and the need to avoid severe off-resonance artifacts resulting from a long readout window. Previously, variable density (VD) spiral, where the \(k \)-space is undersampled at the outer \(k \)-space, has been proposed [3] to address this tradeoff. However, the amount of undersampling in a VD spiral is limited due to the concomitant resolution loss and residual aliasing artifacts.

Parallel imaging techniques can be used to achieve a higher degree of undersampling in a VD spiral, therefore resolving the dilemma between the imaging speed and off-resonance artifacts. However, most existing parallel imaging methods [4-6] either require a long computation time due to their iterative nature, or have difficulty working with VD-spiral datasets where spacing between adjacent spiral lines vary continuously across the \(k \)-space.

In this work, a rapid \(k \)-space-based parallel imaging reconstruction method is proposed for VD spiral, using a set of Generalized GRAPPA for wider readout line (GROWL) operators [7]. Each acquired spiral line is expanded into a wider band with a flexible width across the \(k \)-space, therefore eliminating any undersampled \(k \)-space region. The self-calibration of GROWL operators along various directions are performed using the fully-sampled central \(k \)-space region. \textit{In vivo} brain scans demonstrate that the technique can be used either to achieve a significant acceleration and/or to reduce off-resonance artifacts.

\textbf{Methods}

The basic principle of GROWL for VD spiral is illustrated in Fig. 1. When compared with a uniform-density (UD) spiral, VD spiral significantly undersamples the outer \(k \)-space (Fig. 1a). Using GROWL operators, each acquired spiral line is expanded into a wider band with a flexible width, fulfilling the Nyquist criterion throughout the \(k \)-space (Fig. 1b). The fully-sampled circle at the \(k \)-space center is used for the self-calibration of the GROWL operators. Figure 1c shows three parameters that determine a GROWL operator kernel: the number of source (solid) data points along the readout line \(N_s \), the distance between target (open) and source readout line \(\Delta k \), and the orientation of the operator \(\theta \).

A healthy volunteer was scanned on a 3.0T clinical scanner (Achieva, Philips, Best, The Netherlands), using an eight-channel head coil (Invivo, Gainesville, FL) and a multi-slice 2D \(T_2 \)-weighted gradient echo sequence. Scan parameters: FOV 230×230 mm, slice thickness 5 mm, TR/TE = 500/16 ms, flip angle = 18°. Several VD spiral trajectories were designed to achieve reduction factor \(R = 2, 3 \) and 4. To demonstrate the scan time reduction, multiple pairs of uniform density (UD) and VD spiral datasets (image matrix 256 × 256) were acquired with identical acquisition window length \(T_w = 7, 5 \) and 4.4 ms. UD spiral datasets contain 32, 48 and 64 interleaves, while VD spiral datasets always contain 16 interleaves. To demonstrate the reduction of off-resonance artifacts, both single-shot UD and VD spiral datasets (image matrix 96 × 96) were acquired, with acquisition windows of 50 and 20 ms, respectively.

\textbf{Results and Discussions}

Results from multi-shot VD spiral datasets (Figure 2) show that GROWL reconstruction significantly improves the image resolution compared to regridding reconstruction, while reducing the total scan time by factors \(R = 2, 3 \) and 4. Figure 3 shows results from the single-shot brain scans. Again, GROWL reconstruction (Fig. 3d) improves image resolution vs. direct regridding (Fig. 3c). Moreover, off-resonance blurring is reduced in VD vs. UD datasets (Fig. 3b) due to a shortened readout window.

The reconstruction time for each 2D image is 5-10 seconds for GROWL, which is much faster than most existing techniques [4-6]. This is due to the non-iterative nature and the small kernel size. The GROWL operator can be potentially applied to other \(k \)-space sampling trajectories as long as the curvature of the readout lines is below a certain limit.

\textbf{References}