Purpose: In this educational abstract, we provide an overview of the main T_1 mapping methods and we outline the challenges in performing quantitative T_1 measurement. We describe the gold standard (Inversion Recovery), as well as two widely used alternative methods (Look-Locker and Variable Flip Angle) that speed up the scanning and fitting procedures at the expense of accuracy and precision. The e-poster will include sample T_1 maps of phantoms and in-vivo human brains acquired with each of the above methods, and it will provide a list of useful T_1 mapping references.

Outline of Content:

Inversion Recovery (IR) T_1 Mapping: This gold-standard method for T_1 mapping [1,2] consists of inverting the longitudinal magnetization and sampling the MR signal at several points (T_{1n}) along its exponential recovery with a time constant T_1. The IR pulse sequence is repeated N times, each time applying the same (typically adiabatic) inversion pulse, followed by different waiting times (T_{1n}), and an imaging module that can be either spin echo (SE) or gradient echo (GRE). TR must be on the order of the longest measured T_1 to achieve sufficient magnetization recovery. The general equation used for the fitting procedure is given by: $S_n = a + be^{-\frac{\tau}{T_1}}$, where a and b are complex-valued parameters and T_{1n} is the inversion recovery time of the n^{th} IR scan [3]. For precise and accurate measurement, it is recommended to perform at least four scans with T_{1n} that span the range of expected T_1 values [3]. The gold-standard method does not assume a perfect inversion pulse, but it requires temperature monitoring as T_1 values change with temperature [4]. Additional simplifications can be made if TR>>T_1, or by assuming specific values for θ and α (e.g., 180° and 90°, respectively).

Look-Locker (LL) T_1 Mapping: The Look-Locker sequence is similar to the gold standard scan in that it prepares the magnetization with an inversion pulse, but instead of a single sample of the recovery curve per TR it applies a train of N low flip angle pulses spread across the TR with spacing τ [5]. The signal after the n^{th} sampling pulse is given by: $S_n = \beta (1-DR e^{-\frac{\tau}{T_1}})$ where

$$\beta = \frac{M_0(1-e^{-\frac{\tau}{T_1}})}{(1-\cos \alpha e^{-\frac{\tau}{T_1}}) \sin \alpha}, \quad DR = \frac{\cos \alpha (1-\frac{\cos \alpha e^{-\frac{\tau}{T_1}}}{\cos \alpha e^{-\frac{\tau}{T_1}} + 1})}{1 + \cos \alpha [\cos \alpha e^{-\frac{\tau}{T_1}}]^N + 1}$$

and $T_1^\star = \frac{\tau/T_1 - \ln(\cos \alpha)}{\tau/T_1 - \ln(\cos \alpha)}$. This model is sensitive to field inhomogeneity because it assumes perfect RF pulses of negligible duration and no lag between the RF pulse and the readout. The sensitivity to α reduces as τ/T_1 increases, so spreading the sample points across TR improves accuracy.

Variable Flip Angle (VFA) T_1 Mapping: This method can be used to acquire 3D T_1 maps in clinically feasible times [6, 7]. It utilizes two or more spoiled gradient-echo scans with varying flip angles. The equation describing the signal behavior in a spoiled gradient echo sequence is:

$$S_n = \frac{PD (1-e^{-\frac{\tau}{T_1}}) \sin \alpha}{1-\cos \alpha e^{-\frac{\tau}{T_1}}}$$

This equation assumes TR>>T_1^\star and perfect RF spoiling. Additional noise assumptions can reduce the fitting routine to a weighted least-squares procedure [8]. As is the case for the two previous methods, the VFA method should not assume perfect knowledge of the flip angle α. To account for B_1 inhomogeneities, a field map can be acquired along with the T_1 mapping scans.

Summary: We have outlined the basic pulse sequences and models for accurately mapping the T_1 relaxation time. Attention should be paid to the assumptions underlying any model simplifications, and it is always recommended to check a new method against the gold standard using simulations [9].

References: