In vivo correlation of T1 and methemoglobin in a mouse model of deep vein thrombosis

P. Saha1, M. E. Andia2, U. Blume3, B. Modarai, W. Waltham1, A. Smith1, T. Schaeffter2, and A. J. Wiethoff1

1Department of Academic Surgery, Cardiovascular Division, King's College London, London, United Kingdom, 2Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom, 3Philips Healthcare, Best, Netherlands, 4Philips Healthcare, Guildford, United Kingdom

INTRODUCTION

Magnetic resonance imaging (MRI) has been proposed as a way of detecting venous thrombosis as it is relatively quick, non-invasive and can provide different information about anatomy, flow and stage of the thrombus. MRI has high sensitivity and specificity compared with the gold standard, contrast venography, in diagnosing DVT [1] and longitudinal relaxation T1-weighted images are able to clearly delineate acute venous thrombi. [2] This direct thrombus imaging technique (MR-DTI) is based on the hypothesis that methemoglobin (metHb), which contains Fe3+, accumulates in thrombi and causes T1 shortening compared with the Fe2+ found in the hemoglobin of normal blood. The quantitative measurement of T1 relaxation time for a given pixel (T1-mapping) has been suggested as a method to provide information regarding tissue characteristics of the thrombus in DVT. [3] However, the direct relationship between metHb and T1 relaxation times has not been studied in-vivo to date. The purpose of this study was to investigate the correlation between T1, metHb and organization in greater detail by comparing T1 times with both Fe3+ concentration and histology using an animal model of resolving thrombus.

METHODS

Venous thrombosis was induced in the inferior vena cava of 8-10wk male BALB/C mice in a surgical procedure that involved a combination of reduced blood flow and endothelial disturbance. A partial stenosis reduced blood flow by approximately 90%. [4] The T1 relaxation times of in vivo thrombi were measured at days 1, 4, 7, 10, 14, 21 and 28 after thrombus induction (N=6 per group). Mice were imaged using a clinical 3T MR-scanner (Achieva, Philips, Netherlands) using a dedicated small animal solenoid coil for signal reception. Arterial and venous time-of-flight (TOF) and quantitative flow sequences were obtained to find the location and dimension of the thrombus. A 3D T1-mapping sequence was performed over the entire thrombus. The fast T1-mapping sequence consisted of a modified Look-Locker sequence. [5] T1 maps were generated using a customised programme (MATLAB software, MathWorks). Mice were divided into two groups. In one group, thrombi were excised and processed for histology. Sections were stained using a hematoxylin and eosin (H&E) for anatomical detail; Martius Scarlet Blue (MSB) for red cell and collagen content; and Prussian Blue for haemosiderin content. In a second group of mice, the thrombi were immediately processed after imaging to determine Fe3+ concentration using a QuantiChrom assay kit. Briefly, thrombi were weighed and homogenized immediately after imaging in kit buffer. The color intensity of the formed chromagen was measured at 590 nm using a spectrophotometer. Fe3+ content of the thrombus was subtracted from the total iron content to provide measurement for Fe3+ relative to an iron standard and thrombus weight.

RESULTS

Thrombus was most occlusive at day 7 and almost completely recanalized by day 28. Thrombus stained using MSB, appears to both decrease in size and show increased organization as demonstrated by the blue staining collagen. T1 maps taken of corresponding sections show that T1 times appear to increase between day 7 and 28. (Figure 1). The mean T1 values in the thrombus deceased during the first 7 days then increased with time (P<0.0001) towards the relaxation time of blood. In Figure 2, T1 times are shown for each group (blue triangles) over time with the lowest value occurring at 7 days post thrombus induction. This correlates with the buildup of metHb in response to inflammation and hypoxia in this region as expressed by Fe3+ (Figure 2, red squares).

DISCUSSION AND CONCLUSION

In the murine model of thrombosis used in this study, two distinct stages can be observed. The first includes propagation of the thrombus (days 0-7) followed by its aging to determine Fe3+ buildup of this correlates with the T1 values in the form of metHb correlates directly with the T1 of the thrombus.

REFERENCES