A multimodal imaging study of never-medicated adults with schizophrenia

E. Canu1, R. Gasparotti2, F. Agosta1, P. Valsecchi3, G. Comi4, E. Pagani1, E. Sacchetti3, and M. Filippi1

1Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Hospital San Raffaele, Milan, Italy, 2Department of Diagnostic Imaging, University of Brescia, Spedali Civili, Brescia, Italy, 3Department of Psychiatry, Brescia University School of Medicine, Brescia, Italy, 4Department of Neurology, Scientific Institute and University Hospital San Raffaele, Milan, Italy

Introduction. Recent imaging studies showed grey (GM) and white (WM) matter abnormalities in patients with schizophrenia compared with healthy controls1. However, these findings are not consistent, probably due to the effect of antipsychotic treatment and clinical heterogeneity of the samples2.

Objective. To explore both volume loss and microstructural diffusion changes in adult patients with schizophrenia that never have been medicated.

Methods. Thirty-seven never-medicated schizophrenic patients (age 32.6 ± 10.9, women 48%) and 17 age- and gender-matched healthy controls (age 29.8 ± 8.3, women 35%) were studied. Schizophrenia was diagnosed according to the DSMIV criteria and patients were invited to participate in the study before starting any treatment. All participants underwent 3D T1-weighted and diffusion tensor (DT) MRI scans. Voxel Based Morphometry (VBM) in Statistical Parametric Mapping (SPM8) was used to obtain GM and WM volume loss differences in patients vs. healthy controls. Tract-based spatial statistics (TBSS) in FSL was used to compare mean diffusivity (MD), fractional anisotropy (FA), as well as axial (axial D) and radial (radial D) diffusivity maps between groups.

Results. Compared with controls, schizophrenic patients showed GM volume loss in the middle temporal lobe bilaterally, with a predominant involvement of the right side, and WM volume loss in a region underneath the left lingual gyrus (Figure 1). Patients compared to controls showed increased MD in the fornix, while decreased FA was found in the body and splenium of the corpus callosum, posterior cingulum, and parahippocampal region bilaterally (Figure 2). The pattern of increased radial D in patients vs. controls resembled that of decreased FA, while increased axial D was found in the fornix only.

Conclusion. This is the first study investigating both volumetric and microstructural diffusion changes in a never-medicated sample of adults patients with schizophrenia. Schizophrenic patients demonstrated a complex pattern of parieto-temporo-occipital damage. This pattern is consistent with regions well known to be related to the typical auditory hallucinations3, and neurofunctional networks thought to be involved in the pathophysiology of schizophrenia.