Quantitative MRI Studies for Restless Legs Syndrome: Cerebral Iron, Morphology and DTI

B-Y. Lee1,2, J. Vesek1, J. R. Connor3, and Q. X. Yang1,3

1Center for NMR Research, Radiology, Penn State College of Medicine, Hershey, PA, United States, 2Bioengineering, Penn State College of Medicine, Hershey, PA, United States, 3Neurosurgery, Penn State College of Medicine, Hershey, PA, United States

INTRODUCTION
Restless legs syndrome (RLS) is a sensorimotor disorder that has 5-10% prevalence in Western countries1. Its clinical symptoms are characterized by uncontrollable urges to move the legs with uncomfortable sensations, causing severe sleep disturbances. Although a number of studies have suggested that brain iron deficiency is strongly coupled with RLS pathology2,3, the exact mechanism of how iron deficiency affects brain function or morphology in RLS remains unclear due in part to the lack of integrated multimodal imaging findings. Because of the high demand for iron in the myelination in oligodendrocytes4, we have hypothesized that cerebral insufficient iron level in RLS may cause myelin deficit, resulting in alterations in integrity of white matter structures. To test our hypothesis, our study design included a voxel-based relaxometry (VBR), voxel-based morphometry (VBM) and DTI for the study of cerebral iron, volumetric measurement, and water diffusivities, respectively.

METHODS

All MRI data were acquired on 3.0 T (Philips) with 8-channel head coil. Twenty-four RLS patients (52.4±14.3 yrs) and 24 age-matched controls (52.9±15 yrs) were studied for the brain iron and volume study. Six RLS patients (54.1±19.3 yrs) and 6 age-matched control subjects (54.4±14.5 yrs) were used for DTI study. ANCOVA was used for the statistical group comparison.

For the water diffusivity study, the DTI images were acquired with single-shot spin-echo EPI, SENSE factor 2.5 and 32 diffusion gradient directions with b value=1000s/mm². Radical diffusivity (RA) maps, fractional anisotropy (FA) maps were calculated from DTI data set after eddy current correction using DTI studio.

For the VBR analysis, a series of T₂-weighted images were obtained employing 14 equidistant echoes of 8ms (TR = 3792ms, acquisition matrix = 256×256, slice thickness = 4mm). After generation of the R₂ (1/T₂) maps, the R₂ maps were spatially normalized via registration of each R₂ map into the Montreal Neurological Institute (MNI) space using the customized R₂ template. Subsequently, registered images were resampled and smoothed.

For the VBM analysis, high resolution T₁-weighted images (MPRAGE, TR/TE/TI=9.9/4.6/600ms, isotropic 1mm slice thickness) were acquired. All T₁ images were segmented into GM, WM, and CSF with the customized tissue probability maps using VBM5 toolbox5. After segmentation, the final tissue maps of GM, WM and CSF were normalized and modulated with the Jacobian determinants deformation parameters in order to analyze volume differences. Finally, the modulated tissue maps were smoothed with 8 mm FWHM.

RESULTS & DISCUSSION

Voxel-based DTI analysis shows a decrease in FA values and an increase in FA values in the sensory-motor pathway in RLS patients compared to normal controls (Fig. 1), which are consistent with previous DTI findings6. Radial diffusivity is known to be a sensitive index to the detection of change in the myelin integrity7. Importantly, our previous autopsy study revealed a decrease in concentrations of myelin-specific proteins such as myelin basic protein, a key structural protein in myelin, in RLS brains6, suggesting the altered myelin compaction. In this context, the elevation of RA values reflects that the water diffusion parallel to the axons was maximized in RLS due to the increased freedom of cross-fiber. On the other hand, water diffusivity parallel to the axonal fibers is the lower FA values reflect the decreased axial diffusivity parallel to the myelin sheath in RLS. VBR analysis demonstrates lower R₂ values in the sensorimotor pathway in RLS patients compared to normal controls (Fig. 2). R₂ (1/T₂), has been involved in the in vivo MR assessment of brain iron levels due to local magnetic field inhomogeneities caused by the presence of an iron storage protein of ferritin in the tissue7. Thus, decrease in R₂ values (increased T₂) may indicate the lower levels of ferritin due to iron deficiency in RLS compared to normal controls. VBM results also found the same decreased volumes in these regions in the RLS group, probably resulting from the reduced myelin contents in the white matter (Fig. 3).

Therefore, taken together, impaired iron availability for myelin production in the brain may cause the alterations in the integrity of myelin sheath. Although we investigated the small sample size, increased radical diffusivity and decreased FA values in the sensorimotor areas may still support the hypothesis of pathology of hypomyelination due to iron deficiency. Therefore, the fusion of multi-modal imaging data provides a realistic approach to understanding the mechanism underlying RLS, and is clinically useful for its early diagnosis and interpretation of the pathological basis of RLS.


ACKNOWLEDGEMENT: Grant from PA Department of Health and NIH (1R01AG027771-01A2)