Similar Global N-acetylaspartate in Benign and Non-Benign Multiple Sclerosis

D. J. Rigotti¹, L. Achtenichts², O. Gonen³, J. S. Babbb, Y. Naegelin⁴, K. Bendfield⁵, J. Hirsch⁶, M. Amann⁷, R. I. Grossman⁸, L. Kapposs⁹, and A. Gass²

¹Radiology, New York University School of Medicine, New York, NY, United States, ²Neurology and Neuroradiology, University Hospital Basel, Basel, Switzerland

Introduction:
Approximately 20% of relapsing-remitting multiple sclerosis (RR MS) patients exhibit a benign course defined as full functionality (Expanded Disability Status Scale [EDSS] ≤ 3.0) after at least 15 years of disease duration [1]. Unfortunately, this diagnosis is only retrospective. Considering the high costs and side effects of MS treatment and its variable course, an early determination of individualized treatment is needed but lacking. Existing metrics, such as lesion load, have not adequately met this challenge; yet regional declines in the neuronal marker N-acetylaspartate (NAA) have correlated promisingly with clinical disability [2]. Our goal, therefore, is to test whether clinically benign MS patients retain higher global concentrations of NAA (WBNAA) than their more profoundly disabled contemporaries.

Methods:
Lesion loads (both T₁ and T₂) and fractional brain parenchymal volume, a marker of atrophy (fBPV) were obtained from MR imaging and WBNAA from proton MR spectroscopy [3] in (i) 24 benign MS patients: 23.1±7.2 years disease duration, median EDSS score of 2.0, (ii) 16 non-benign patients: 21.0±4.0 years disease duration, median EDSS of 4.0 and (iii) 17 healthy, age-matched controls.

Results:
Sample MP-RAGE images and spectra from each subject group (control: a, benign: b, non-benign: c) are shown in Fig.1. They illustrate the relative similarity between the two phenotypes in terms of atrophy (which is much higher than in controls), and T₁ hypointense lesion. Indeed, the controls’ fBPV, 86.2±3.3%, was significantly higher than either patient group (benign: 76.4±6.7%, non-benign: 76.8±9.1%, p<0.01), as shown in Fig.2. Also displayed in Fig.2 is the non-benign group had higher T₁ hypointense lesion load (4.5±5.8 vs. 2.1±2.2 cm³ (p=0.031)), but indistinguishable T₂ hyperintense lesion volumes from the benign group (9.8±7.4 vs. 6.2±5.5 cm³, (p=0.05)). The controls’ 12.2±2.3 mM WBNAA was higher than the benigns’ 10.5±2.4 mM, and non-benigns’ 10.1±2.3 mM, (p<0.04 for both), yet, as shown in Fig.3, there was no difference between patient groups (p=0.7).

Discussion:
Aside from a higher T₁ hypointense lesion load, the non-benign group was indistinguishable from the benigns in every other metric studied. The disconnect between clinical definition and MR-derived measures is likely due to a combination of insufficient boundaries of the clinical phenotype, variations in brain plasticity and the distribution of lesions and neurodegeneration in brain areas of disparate eloquence.

References: