DO COMMONLY USED B-VALUES YIELD ACCURATE APPARENT KURTOSIS VALUES?

T. Kuder¹, B. Stieltjes², W. Semmler¹, and F. B. Laun¹
¹Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany, ²Quantitative Imaging-based Disease Characterization, German Cancer Research Center, Heidelberg, Germany

Introduction
The diffusion restrictions present in biological tissue result in deviations from the Gaussian propagator shape, which can be quantified using the apparent kurtosis \( K_{app} \). \( K_{app} \) is defined by eq. 1, where \( \langle \phi^n \rangle \) is the expectation value of the \( n \)-th power of the spin phase, and it appears in the expansion of the logarithmic signal in powers of \( b \) (eq. 2).

\[
K_{app} = \langle \phi^4 \rangle / \langle \phi^2 \rangle^2 - 3 \quad (1); \quad \ln[S(b)/S(0)] = -bD_{app} + b^2D_{app}^2K_{app}/6 + A b^3 + B b^4 + \ldots \quad (2);
\]

In practice, to measure the kurtosis, the expansion (eq. 2) is terminated after the quadratic summand and the resulting polynomial is fitted to the signal acquired at different \( b \)-values [1]. The kurtosis obtained this way is named \( K_{app,\text{fit}} \). In clinical applications, the maximum \( b \)-value \( b_{\text{max}} \) is typically chosen such that \( b_{\text{max}}D_{app} \) ranges from 1 to 2. Since it is not clear to date whether this choice of maximal \( b \)-values is appropriate, the aim of this work was to verify that question for different model geometries and in phantom experiments.

Methods
For the simulation of diffusion inside closed geometries (slab, cylinder, sphere), the multiple correlation function approach [2] was used, which allows a very accurate signal calculation with short computation times. The number of eigenvalues of the Laplace operator used for the calculation was 100. Bipolar gradients of duration \( T \) were chosen, with the gradient amplitude \( g \) for \( 0 \leq t \leq T/2 \) and \(-g\) for \( T/2 < t \leq T \). The results were substituted by Monte Carlo random walk simulations. For open geometries, Monte Carlo simulations were used simulating the random walk of particles in the space between impermeable cylinders with different packing distributions: cubic, hexagonal and hexagonal with holes; and with different packing densities. In the case of a collision with the confining geometry, the rest of the step was executed starting at the collision point with an appropriately reduced step size. In all simulations, the time \( T \) was varied in the range from 5 ms to 150 ms. The free diffusion constant was set to \( D = 2 \mu \text{m}/\text{ms} \), the thickness of the slab to 15 \( \mu \text{m} \), the diameters of the sphere and of the cylinders to 7.5 \( \mu \text{m} \). For different \( b_{\text{max}} \)-values, the signal was calculated for 20 equidistant \( b \)-values ranging from 0 to \( b_{\text{max}} \) and the kurtosis \( K_{app,\text{fit}} \) was obtained by fitting eq. 2. In addition, \( K_{app} \) was directly calculated with eq. 1.

Phantom datasets were acquired on a 1.5 T MR scanner (Avanto, Siemens) using a standard twice refocused spin echo EPI diffusion sequence (TR=4 s, TE=144 ms, voxel size 2.5\( \times \)2.5\( \times \)5 mm\(^3\), FOV 320\( \times \)190 mm\(^2\), 1 gradient direction orthogonal to the fibers, 32 averages, 18 \( b_{\text{max}} \)-values ranging from 1500 to 10000 s/mm\(^2\), 16 equidistant \( b \)-values for each \( b_{\text{max}} \)-value ranging from 0 to \( b_{\text{max}} \)). The phantoms consist of parallel fibers (radius 7.5 \( \mu \text{m} \)) with diffusing water between them [3].

Results
In almost all simulations, applying \( b \)-values such that \( b_{\text{max}}D_{app} \) is between 1 and 2 results in substantial deviations of \( K_{app,\text{fit}} \) from \( K_{app} \). Fig. 1 shows four exemplary graphs for diffusion inside cylinders (a,b) and between cylinders (c,d), demonstrating three different possible dependencies of \( K_{app,fit} \) on \( b_{\text{max}} \). In Fig. 1c and 1d, \( K_{app,\text{fit}} \) is highly underestimated, for instance by the factor 5.2 at \( b_{\text{max}}D_{app} = 2 \). In Fig. 1b, in which \( K_{app,\text{fit}} \) is overestimated, a rather exceptional case is shown: There is only a weak dependence on \( b_{\text{max}} \) for \( b_{\text{max}}D_{app} < 1 \). In Fig. 1a, for \( b_{\text{max}}D_{app} > 1 \), even the sign of \( K_{app,\text{fit}} \) is different from that of \( K_{app} \). In general, the influence of \( b_{\text{max}} \) on \( K_{app,\text{fit}} \) strongly depends on geometry and on the time \( T \), but in all cases, \( K_{app,\text{fit}} \) converged to \( K_{app} \) in the limit of very small \( b_{\text{max}} \).

Discussion
At the \( b \)-values typically used in vivo (\( b_{\text{max}}D_{app} > 1 \)), \( K_{app,fit} \) mostly deviates strongly from \( K_{app} \) for the model geometries used in the simulations. Consequently, the measured kurtosis \( K_{app,fit} \) is a mixture of \( K_{app} \) and higher orders in the expansion (eq. 2). This strong influence of higher powers of \( b \) also can be observed in phantom datasets. Initial measurements in the human brain suggest that the higher order contributions are also relevant for in vivo measurements. To reduce the influence of the higher order terms, measuring at very low \( b \)-values would be desirable. Then, however, the signal drop and the curvature of the logarithmic signal are often insufficient for a stable \( K_{app,\text{fit}} \). A potential remedy allowing to measure \( K_{app} \) experimentally might be to acquire a \( K_{app,\text{fit}} \) as a function of \( b_{\text{max}} \) and to extrapolate this curve to small \( b \)-values.

References