Gene therapy evaluated using in vivo diffusion tensor imaging

J. H. Kim1, A. S. Reddy1, M. S. Sands2, and S-K. Song1

1Radiology, Washington University, St. Louis, Missouri, United States, 2Internal Medicine, Washington University, St. Louis, Missouri, United States

Introduction
Diffusion tensor imaging (DTI) is one of the most commonly used imaging modalities to assess central nervous system (CNS) tissue integrity. It has been widely applied for diagnosis and monitoring therapy efficacy. However, its use to monitor gene therapy of CNS diseases has not been common. Globoid-cell Leukodystrophy (GLD) is an inherited demyelinating disease caused by a deficiency of the lysosomal enzyme Galactosylceramidase (GALC). A previous study demonstrated dramatic synergy between CNS-directed AAV2/5 gene therapy and myeloreductive bone marrow transplantation (BMT) in the murine model of GLD (twitcher). In the present study, in vivo DTI was employed to evaluate the effect of gene therapy of twitcher mice demonstrating the treatment induced recovery of white matter integrity.

Materials and Methods
Animals
Heterozygous twitcher (GALC+/-) mice on a congenic C57BL/6 background were obtained from The Jackson Laboratory (Bar Harbor, ME). The homozygous twitcher mice (GALC-/-) were obtained by heterozygous by heterozygous matings. The genotype was determined by twitcher-specific PCR. Four groups of animals were examined: untreated wildtype (wt), untreated twitcher (twitcher), AAV2/5 only twitcher (AAV), and combination treated twitcher (AAV+BMT).

Treatment Regimens
The treatment of AAV+BMT group consisted of AAV2/5 injections on day 2 or 3 of life and BMT on the following day consisting of an intrathecal injection and 6 intracranial injections. Intrathecal injections were performed on the neonatal spine, in the midline at the upper lumbar vertebral column. A total of 15 μl of virus was injected using a 50 μl Hamilton syringe. For intracranial delivery, 2 μl of AAV2/5 was injected at both hemispheres: a) forebrain: 2mm lateral and 1mm caudal to bregma and 1.5mm deep, b) thalamus: 2mm lateral and 2.5mm caudal to bregma and 2.5mm deep; and c) cerebellum: 1mm lateral and 3mm posterior to lambda and 2.5mm deep. For BMT, the bone marrow donors were sex-matched syngenic WT (GALC+/-) mice expressing GFP under the CAGGS promoter which were maintained as a separate colony. Newborn mice received 400 rads of total body radiation from Cs137 source for conditioning followed by injection of 10^6 GFP(+) sex-matched unfractionated bone marrow cells in 100 μl volume in to the superficial temporal vein.

DTI
Five 36 days old mice from each group were employed for in vivo DTI examination on a 4.7 T magnet utilizing respiratory gated spin-echo diffusion-weighted sequence with actively decoupled volume (6-cm inner diameter, RF excitation) and surface coil (16 mm x 9mm, signal receiver). All images were obtained with acquisition parameters of TR 1.2 sec (gated acquisition), TE 38 ms, Δ 18 ms, δ 7 ms, slice thickness (1.0 mm), zero filled spatial resolution (38 μm x 38 μm), total data acquisition time ~ 1.0 hr, (Gx,Gy,Gz) = (1,1,0), (1,0,1), (0,1,1), (1,1,0), (0,-1,1), and (1,0,-1), and b = 0 and 1.0 ms/μm^2.

Results and Discussion
Decreased λ|| and increased λ⊥ was apparent in the in vivo DTI parameters maps (Fig. 1 a – h). In DWM (i and k), the λ|| of AAV+BMT was statistically insignificantly lower than that of the control suggesting a positive treatment effect. In the AAV only treatment the λ|| was statistically significantly lower than that of the control suggesting a less effective axonal preservation. A trend of steadily decreased λ⊥ was seen from the untreated mutant to the wild type control suggesting the more effective myelin preservation in AAV+BMT treatment while AAV was also showed some positive myelin preservation. In VLWM (j and l), both AAV+BMT and AAV treated groups showed statistically significantly improved λ|| and λ⊥. Although the λ|| and λ⊥ were not completely back to the control value after AAV+BMT or AAV treatments, the significantly improved axon and myelin preservation suggests the efficacy of these treatments. The current finding supports that in vivo DTI may be used to monitor gene therapy in leukodystrophy and potentially other white matter diseases.