Continuous SWIFT

D. Idiyatullin, S. Sudderth, C. Corum, G. Adriany, and M. Garwood

1CMRR, Radiology, University of Minnesota, Minneapolis, MN, United States, 2Agilent Technologies, Santa Clara, CA, United States

INTRODUCTION

The SWIFT method (SWeep Imaging with Fourier Transform) [1] has significant benefits for studying objects with ultra fast spin-spin relaxation rates and has already found unique applications ([2,3]). The regular (gapped) SWIFT sequence uses swept radiofrequency (RF) excitation and virtually simultaneously signal acquisition in a time-shared mode. Due to the finite time required to switch between transmit/receive modes (T/R), very high excitation bandwidths can be difficult to achieve with gapped SWIFT. To overcome this, here we describe a first attempt to implement SWIFT in a continuous mode (cSWIFT) for imaging and spectroscopy.

THEORY

A sweeping RF field is a function of both time and frequency. That is why the response to such excitation can be treated in either the time or frequency domain, which in the case of a constant amplitude of RF, can be represented by a chirp function:

\[c(t) = \exp(-it \theta \gamma^2) = \exp(-j\omega_t^2 / 4\pi b), \]

where \(b \) is sweep rate in sec^{-2} and subscript ”-“ denotes the sign of sweep direction. In continuous mode the acquired raw signal \(S \) contains the convolution (linear approximation) of a free induction decay (FID) \((h(t)) \) with the chirp, which is mixed with “leakage” from the transmitted signal:

\[S = \left(h(t) \otimes c^(-1) \right) c^(-1) + Ae^{\text{im}}, \]

where multiplication by \(c^(-1) \) describes a phase sensitive detection with the receiver frequency changing synchronously relative to the excitation frequency (the frequency-modulated (FM) frame [4]), and where \(A \) and \(\varphi \) are the amplitude and phase of the “leakage”. In the FM frame, the transmitted signal is a smooth function (for an ideal transmitter), which can be subtracted by using a regular baseline correction method. Afterwards, the spectrum of the spins \((H(\omega)) \) can be extracted by existing schemes of de-convolution: (a) considering a signal in the time domain as in the SWIFT method:

\[H(\omega) = F\left\{ h(t) \otimes c^{-1} \right\} * F\{c^{-1}\}, \]

or (b) as a frequency domain signal, used in Rapid Scan method

\[\text{METHOD} \]

Spectroscopic and imaging data were acquired using 9.4T (animal-bore) and 4T (clinical-bore) MRI scanners equipped with Varian (Agilent) DirectDrive consoles. The spectra and images were acquired with the basic connection scheme presented in Fig.1, which uses a hybrid and quadrature coil. Transmitter coupling through the hybrid as observed by the console was minimized through adjustment of individual coil tune and match conditions.

RESULTS and CONCLUSIONS

Fig.2 present the array of raw data (top) and de-convolved spectra (bottom) of an ethanol-water mixture (in 15 cm diameter glass sphere) with increasing flip angles (from left to right) in continuous mode. As expected the baseline of raw data increases with increasing flip angle and is approximately equal to amplitudes of the FIDs. With appropriate tune/matching the connection shown in Fig.1 gives about 20dB T/R insulation. The first cSWIFT image of human total knee arthroplasty sample is presented in Fig.3 (left) and compared with a gapped SWIFT image (right) with approximately similar flip angles. It is worth noting that the relative intensity of cartilage is higher in continuous mode. The different contrast in these images might relate to additional saturation of broad collagen signal [8] from the sidebands created in the gapped mode, but a definite conclusion requires more detailed study.

Even though the signal-to-noise ratio of the presented spectra and images in continuous mode are notably lower than in gapped mode, these results can be considered as a successful “proof of principle” of the continuous SWIFT technique. Improvement of this technique is expected with stabilization/filtering of the transmitter output and development of dedicated schemes for additional T/R isolation. There are two main factors which distinguish SWIFT from pulsed NMR techniques and therefore allow using SWIFT in continuous mode. The first is that SWIFT with chirp excitation pulse uses the lowest possible amplitude of RF field for given flip angle because the power is evenly distributed in time. Second, because the spin signal (convolved with the excitation pulse) is also distributed in time, this allows the lowest possible dynamic range, which allows a regular ADC to resolve the spin signal on top of the relatively high “leakage” transmitter signal. In conclusion, due to the absence of a “dead time” cSWIFT extends the application of MR imaging and spectroscopy to studying ultra fast relaxing spins or spin systems with ultra broad chemical shift distribution beyond that of gapped SWIFT or UTE type sequences.

ACKNOWLEDGEMENTS

This research was supported by NIH P41 RR008079, S10 RR023730, S10 RR027920 RR008079, R21 CA139688 grants and WM Keck Foundation. We also thank Jutta Ellermann and Elizabeth Arendt for opportunity to use TKA sample at this study.

REFERENCES