Feasibility of in vivo phosphorus imaging of cortical bone at 7T in humans

P-H. Tsai1, A. C. Seifert1, A. C. Wright1, H. S. Rad1, J. F. Magland1, H. K. Song1, M. B. Leonard1, and F. W. Wehrli1

1Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; 2Center for Clinical Epidemiology and Biostatistics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States

Introduction
Phosphorus concentration of bone plays an important role in the maintenance of bone strength in disorders such as osteomalacia, which is characterized by hypomineralization of bone [1]. 31P MRI potentially provides a noninvasive method to evaluate the degree of bone mineralization. Previous reports have shown that solid-state imaging techniques are suited for acquiring 31P MR images of specimens and, possibly, in vivo [2-4]. However, since SNR scales as √(T2/T1) [5], it is difficult to obtain sufficient SNR at desirable resolutions due to the extremely short T2* (~ 220 µs) and long T1 (~ 50 s) of bone phosphorus, as well as its relatively small gyromagnetic ratio. We estimate that 31P SNR at 7T is intrinsically about 1000 times less than that of muscle water. For this reason, optimization of the imaging hardware, pulse sequence, and post-processing is particularly important. In this study, we constructed small surface coils for use in a 7T whole-body MRI scanner and developed a 3D radial concentric-cone imaging sequence to image 31P of tibial cortical bone in vivo.

Methods
To estimate the T2* of cortical bone, we acquired a 31P spectrum of a lamb cortical bone specimen. For in vivo human imaging, a healthy volunteer was scanned in a supine position in a 7T MR system (Siemens, Germany) and the cortical bone of the left tibia was chosen as the target at approximately mid-shaft, where cortical bone is thickest. A home-built 1H transmit-receive surface coil (5x5 cm²) first was placed on the tibia to obtain a localizer image. The 1H coil then was removed and replaced by a 31P receive-only 2-turn surface coil (3x3 cm²). A small reference phantom, consisting of a glass vial filled with synthetic calcium hydroxyapatite, was attached to the top of this 31P surface coil. Excitation was achieved by a 31P birdcage head coil, which provided a relatively homogeneous B1 field. For 31P imaging, a 3D radial cone pulse sequence (Fig. 1) was applied with a non-selective hard pulse, nominal flip angle = 5.6°, pulse duration = 10 µs, TR = 250 ms, TE = 30 µs, number of cones = 64, total projections = 5332, readouts per projection = 128, dwell time (dw) = 5 μs, voxel size = (2.42 mm)³, and total acquisition time = 22min13s. Following data acquisition, only 64 points of 128 readouts were used to reconstruct the image. In addition, T1 and T2 modulation correction was applied to compensate for amplitude discontinuities from progressive saturation. The data were reconstructed using a nonuniform fast Fourier transform method combined with density compensation based on the correction of imperfect gradient performance due to eddy currents.

Results
The 31P spectrum of lamb cortical bone had a full width half maximum (FWHM) approximately equal to 4.5 kHz corresponding to T2* = 220µs. The central slice of a phosphorus image data set from the volunteer is shown on Fig. 2a. The SNR of the cortical bone in this central slice was around 15 at the voxel size of (2.42 mm)³. Signal from the upper area of cortical bone was higher than deeper regions due to the restricted sensitive depth of the surface coil. Fig. 2b shows a fusion of the central slice 31P image with the corresponding 1H localizer image, in which 1H and 31P signals are displayed in grayscale and in color, respectively. It can be seen that the shape of the phosphorus signal closely matches the boundary of the cortical bone showing the shape of the endosteal cavity containing fatty marrow. The latter exhibited a small right-left chemical shift artifact along the readout direction in the 1H localizer image.

Discussion and Conclusions
The present results demonstrate the feasibility of in-vivo phosphorus imaging of cortical bone at 7T. Although phosphorus in muscle has a much longer T2 compared to that in bone, there was no measurable signal from muscle with the surface coil due to the scan parameters having been optimized for the relaxation properties of bone phosphorus and the greater depth. A previous paper showed an in vivo phosphorus image of cortical bone at 1.5 T using a 3D hybrid UTE sequence with a selective excitation pulse [4]. However, the image slice thickness required was 60 mm due to SNR constraints. Imaging at 7T somewhat mitigates this problem, along with the use of a 3D hard pulse allowing for an short pulse duration (10µs), which preserves more of the short T2* signals and permits an “echo time” limited only by the deadtime of the coil T/R switch. In summary, our preliminary findings indicate that the proposed method can map the phosphorus content of cortical bone in vivo at relatively high resolution, and may have potential to quantify the change of bone mineralization density during the progression of osteomalacia. Future work will address the necessary steps to achieve quantification of bone phosphorus concentration, which will require correction of the 31P image intensity for any flip angle variation due to inhomogeneity of the RF transmit field and for the reception sensitivity profile of the 31P surface coil, as well as for the specific relaxation properties of bone and reference. Following these corrections image intensity can be converted to phosphorus concentration by scaling it with that of the reference phantom of known phosphorus concentration.

References

Acknowledgements
NIH AR50068, Penn Institute for Translational Medicine.