Accelerating Magnetic Resonance Spectroscopy Imaging by Compressed Sensing

P. Cao, C. Lau, and E. Wu

1 Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China, People’s Republic of Hong Kong SAR, People’s Republic of China, People’s Republic of Hong Kong SAR, People’s Republic of China

INTRODUCTION
Conventional phase encoded MRSI is relatively inefficient and time-consuming because it involves a large number of phase encodings [1]. As a result, small number of phase encodings are commonly employed in practice, leading to low spatial resolution and intra-voxel contamination [2]. In this study, we aimed to examine the applicability of compressed sensing (CS) [3] to MRSI in order to accelerate data acquisition. We proposed that by undersampling the 2D phase encodings in a random and non-uniform manner, the proton MRSI acquisition could be significantly reduced without sacrificing the spectral quality while maintaining high spatial resolution.

METHODS
Random Phase Encoding: The random undersampling procedure was first demonstrated by Lustig et al. [4]. In our study, undersampling along two phase encoding directions was achieved by randomly selecting the phase encoding lines (readout) measured. The acquisition order was phase encoding in Kx-direction, phase encoding in Ky-direction and readout in Kf-direction (Fig. 1a). The sampling density function was quadratic with the highest value in the center of Kx-Ky plane.

Image Reconstruction: As shown in Fig. 1, reconstruction was performed with the following procedures: (1) Undersampled data (Fig. 1a) was reordered into the form Kx-Ky-Kf (S in Fig. 1b) and the unmeasured phase encoding lines were filled with zeros; (2) 2D Fourier transform was performed along Kf direction while 2D Inverse Fourier transform were performed on Kx-Ky plane, producing X; (3) The sparse coefficients [4] of X were calculated and used to generate X*, (4) unmeasured phase encoding lines in Fig. 1a were filled with the values from X* (after transform to k-space, Fig. 1c) to form a new S; (5) steps 2 to 4 were iterated until the data converged. The convergence criterion is \(|X - X^*|/|X| < 10^{-4} \).

Phantom MR Experiments: All experiments were performed on a 7T Bruker scanner. Fig. 2a shows a T1-weighted (T1W) image of a cylindrical phantom containing dimethyl sulfoxide (DMSO) and distilled water separated by a plastic layer. The phantom was then scanned using a PRESS sequence with TR/TE = 1000/20ms, NEX = 1, no water suppression and scan time of 17 mins. The FOV 30×30mm × 20×20mm was used, with a total of 1024 phase encodings were acquired. Random undersampling was done retrospectively by randomly selecting 551 phase encodings from the full dataset (undersampling ratio = 53%).

In vivo Rat Brain MR Experiment: A semi-LASER sequence (TR/TE = 800/40ms) with 4 steps phase cycling was applied to a 1D Fourier transform was performed along Kf direction while 2D Inverse Fourier transform were performed on Kx-Ky plane, producing X; (3) The sparse coefficients [4] of X were calculated and used to generate X*, (4) unmeasured phase encoding lines in Fig. 1a were filled with the values from X* (after transform to k-space, Fig. 1c) to form a new S; (5) steps 2 to 4 were iterated until the data converged. The convergence criterion is \(|X - X^*|/|X| < 10^{-4} \).

RESULTS: With 53% undersampling ratio, the random phase encoding method preserved the boundaries between water and DMSO (Fig. 2b), with minimal ringing artifact (Fig. 2c). With 50% undersampling ratio, Fig. 3c and 3d showed that the proposed undersampling led to a 2 fold increase in resolution for delineation of the lesion boundary with only 31% increase in scan time. With the same number of averages and ¼ the voxel volume, the proposed undersampling approach still yielded spectral SNR comparable with the control.

CONCLUSION: These experimental results demonstrated that the proposed CS method can be applied to 2D MRSI, yielding a large undersampling and acceleration factor. Such approach can improve spatial resolution without compromising spectral quality.

Fig. 2: (a) T1W image of cylindrical phantom. (b) Water peak maps and DMSO peak maps of fully phase encoded and 53% random phase encoded. (c) Intensity multiplied by 5.