Contrast enhanced MR angiography of the thoracic aorta: comparison of ECG-gated techniques at 3T

R. P. Lim1, R. Avery1, M. Bruno1, D. Mossa1, G. McNeal2, Y. Natsuaki2, and M. B. Srichai1

1Radiology, NYU Langone Medical Center, New York, NY, United States, 2Siemens Healthcare, United States

Introduction:
3D T1-weighted contrast-enhanced MRA (CE-MRA) is routinely used for non-invasive evaluation of the thoracic aorta. However, competing demands of high spatial resolution and fast (breath-hold) acquisition often preclude ECG-gating, leading to motion artifact at the aortic root1. ECG-gated CE-MRA is feasible, but acquires 1 partition per heart beat with standard Cartesian acquisition, prolonging scan time due to wasted “dead” time prior to the next cardiac cycle, often exceeding breath-hold capabilities. We evaluate an ECG-gated CE-MRA sequence that utilizes alternative Cartesian k-space sampling whereby adjacent kx and ky points are acquired in a zigzag pattern per heart beat (Fig 1) to improve scanning efficiency and co-ordinate contrast timing with optimal cardiac phase acquisition, and compare it to our standard clinical gated CE-MRA technique.

Methods:
8 patients (6 male, mean 42y, mean heart rate 61bpm) underwent CE-MRA at 3T (Verio, Siemens Healthcare). After informed consent, patients underwent a two-injection protocol with standard ECG-triggered CE-MRA (S-MRA) and zigzag (Z-MRA) ECG-gated CE-MRA (IPR #573: Gated CE MRA, Siemens Healthcare, Germany) performed in random order. 0.075 mmol/kg Gd-DTPA was used for each injection (total 0.15mmol/kg per patient). Sagittal oblique acquisitions were performed. Arterial contrast timing was based on a timing run and standard formula2. Patients were instructed to breathe-hold, followed by shallow breathing if they could no longer suspend respiration for the scan duration. S-MRA parameters were: TR/TE 1 R/R′/1ms, FA 17°, FOV 400mm, 1.6x1.6x2.4mm true resolution and FOV with other parameters: TR/TE 1 R/R′/1ms, FA 20°, time to center (TTT) approximately 4.5s. TTT per heartbeat (k=0) acquired at 353ms post-trigger, 3-5 k loops per heartbeat (heart-rate dependent). 6/8 partition and phase partial Fourier, and a parallel imaging factor of 2 were used for both sequences. Images were independently reviewed by a blinded cardiologist and radiologist. Image quality (IQ) (0=non-diagnostic, 1=satisfactory, 2=good, 3=excellent), artifacts (0=non-diagnostic, 1=severely limiting, 2=mildly limiting, 3=not limiting, 4=no artifact) and pathology were recorded for 8 arterial segments (sinuses of Valsalva, sinotubular junction (STJ), ascending/arch/descending/diaphragmatic aorta, coronary artery origins, great vessels). Orthogonal diameters were measured at each segment.

Results:
256 segments (128 x 2 readers) were evaluated. Ascending aortic aneurysms (n=2) and a coarctation (n=1) were diagnosed with both techniques. No scans were considered non-diagnostic (Fig 2). Average scan time was significantly higher for with S-MRA compared to Z-MRA (44.8±9.5s versus 15.7±3.8s, respectively, p=<0.001). Image quality was slightly higher for S-MRA compared to Z-MRA (3.2 versus 3.0, respectively, p = 0.04). Highest IQ scores were recorded for segments beyond the ascending aorta for both sequences. STJ/ coronary origin IQ scores and STJ artifact scores were significantly superior for S-MRA, with no other significant differences between sequences.

For artifact, mean scores were slightly higher for S-MRA (3.1±1.2) than Z-MRA (2.9±1.1), but did not achieve statistical significance (p=0.08). Segmental IQ scores are summarized in Table 1. Motion was responsible for all artifact scores of 0 or 1 (non-diagnostic and severely limiting). Motion artifact rendered 11/256 (4.3%) segment ungradable (S-MRA, n=10; Z-MRA, n=13), 11/23 were coronary artery origins (Z-MRA, n=9), and 5/23 sinus of valsalva segments (Z-MRA, n=4). Orthogonal diameter measurements were averaged and compared without meaningful difference in any segment (table 2). Bland-Altman analysis revealed a mean measure difference (Z-MRA minus S-MRA) in aortic diameter of 0.01±0.33 cm between the techniques. Kappa coefficients for diameter measurements showed moderate to substantial agreement (0.49-0.75) between readers for all segments, for both sequences.

Conclusion:
Our preliminary results demonstrate that diagnostic quality ECG-gated Z-MRA is feasible in reasonable breath-hold times in a clinical population. Results in terms of image quality, artifacts and aortic diameter measurements are comparable to standard ECG-gated MRA that uses a 1 partition per heartbeat approach, with considerable decrease in scan time. However, motion at the aortic root was responsible for the majority of non-diagnostic and severely motion-affected segments for both sequences. Further optimization of Z-MRA k-space sampling strategies tailored to patient heart rate, coupled with aggressive image acceleration, may engender further gains in aortic root image quality within comfortable breath hold scan times.

References: