Quantitative cartilage degeneration associated with spontaneous osteoarthritis in a guinea pig model

M. Fenty1, V. Kassey1, G. Dodge2, A. Borthakur3, and R. Reddy4

1CMROI, Radiology, University of Pennsylvania, Philadelphia, PA, United States; 2McKay Orthopaedics Labs, Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States

Introduction: Osteoarthritis (OA) is a common and painful condition with a multi-factorial etiology of the musculoskeletal system affecting more than 50% of the U.S. population over 65 (1) (2). Degeneration of the articular cartilage tissue, which is believed to be a primary factor in the development of OA, is a slow process and typically takes decades to have full thickness loss, but can be significantly accelerated due to trauma or surgical procedures (3). Dunkin-Hartley guinea pigs have been shown to develop OA with the earliest stage of detection manifesting as early as three to four months of age. Therefore, the Dunkin-Hartley guinea pig model provides a practical system for the longitudinal studies of the progression of OA (3) (4) (5). \(T_1\) MRI is sensitive to the slow-motion interactions on glycosaminoglycan chains of PG with bulk water protons (6) and has been shown to correlate with cartilage proteoglycan content (6) (7). The \(T_1\) relaxation rate has been shown to increase linearly with PG loss in controlled degradation experiments performed on ex vivo bovine patellae samples (6) (8), in the porcine model of IL-1\(\beta\) induced cartilage degeneration (9), and in humans with chondromalacia (10). However, there have been no \(T_1\) MRI studies in the Dunkin-Hartley guinea pig model with naturally occurring joint disease that closely mimics human OA. Therefore, the aim of this study is to quantify age-dependent cartilage degeneration via \(T_1\) MRI with verification by histopathology measurements.

Methods: Dunkin-Hartley guinea pigs were obtained at various ages and maintained under an IACUC approved protocol. The right hind stifle joint was imaged using \(T_1\) MRI on a 9.4 Tesla Varian horizontal 20 cm bore scanner. Reproducibility of \(T_1\) MRI with specified imaging parameters was described previously. Three age cohorts; 3 month old (N=8), 5 month old (N=6), and 9 month old (N=5), were used to determine the age-dependent osteoarthritic changes as measured by \(T_1\) MRI. Validation of age-dependent cartilage degeneration was confirmed by histology and Safranin-O staining. Cartilage thickness measurements were calculated through high resolution histological sections.

Results:

Figure 1: Representative \(T_1\) maps in color (top row) are overlaid on \(T_1\) MR images from representative 3, 5, and 9 month old animals. Color bar on the right represents \(T_1\) value in milliseconds. Histograms of \(T_1\) values and representative Safranin-O stained histological sections are shown below each image (middle and bottom rows, respectively). Both 5- and 9-month old animals displayed higher \(T_1\) values than the 3 month old, and age-related loss of PG loss was confirmed with subsequent histology images stained for PG content.

Figure 2: Mean cartilage thickness measurements are plotted with 95% confidence intervals (CI). Values are recorded using high-resolution histology. There are significant differences (\(\ast\=p<0.01\)) between both the 3- and 5-month old animals compared to the 9-month cohorts but not between 3- and 5-month old cohorts.

Figure 3: Mean cartilage thickness measurements are plotted with 95% confidence intervals (CI). Values are recorded using high-resolution histology. There are significant differences (\(\ast\=p<0.01\)) between both the 3- and 5-month old animals compared to the 9-month cohorts but not between 3- and 5-month old cohorts.

Figure 4: Mean signal intensities from Safranin-O stained histology sections of each animal vs. their average \(T_1\) value. Where \(\bullet\)=3-month, \(\square\)=5-month, and \(\triangle\)=9-month data. A moderate correlation (\(R^2=0.44, p<0.01\)) exists but is improved (\(R^2=0.67, p<0.01\)) if the outlier with abnormal and statistically significantly (\(z=-2.2\)) high stain intensity (indicated by dotted circle) is removed before analysis.

Conclusions: The data presented demonstrate that \(T_1\) can serve as a quantitative noninvasive tool to characterize joint cartilage degeneration during OA. Age-dependent changes, a characteristic of this well-defined animal model and verified with histological measurements of proteoglycan loss, strongly correlated with \(T_1\) across different age groups. \(T_1\) has adequate dynamic range to detect and track the progression of cartilage degeneration in the guinea pig model before gross anatomical changes such as cartilage thinning has occurred and is a surrogate to invasive analytical techniques. This study presents a technological advancement that would permit longitudinal studies of evaluating disease-modifying therapies useful for treating OA.

Acknowledgements: This study was funded by an NCRR supported Biomedical Technology Research Center and NIAMS