The DCE-MRI AKtrans Parameter Has Diminished Sensitivity to AIF Variation

E. Hum1, X. Li1, L. Tudorica2, K. Oh3, S. Hemmingson1, M. Kettler2, J. Grinstead1, G. Laub1, C. Springer1, and W. Huang1

1Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States, 2Diagnostic Radiology, Oregon Health & Science University, Portland, OR, United States, 3Siemens Healthcare, Portland, OR, United States, 4Siemens Healthcare, San Francisco, CA, United States

Introduction: The DCE-MRI pharmacokinetic parameter (\(AK_{\text{trans}}\)) shows high diagnostic accuracy in breast cancer detection (1-3). This novel imaging biomarker results from analyzing a DCE-MRI data set twice, once with the Standard Model (SM) (4) and once with the Shutter-Speed Model (SSM) (5). \(AK_{\text{trans}}\) is defined as \([K_{\text{trans}}(\text{SSM}) - K_{\text{trans}}(\text{SM})]\), where \(K_{\text{trans}}\) is a contrast reagent (CR) extravasation rate constant. Thus, it apprises precisely the only SM/SSM difference - their treatments of inter-compartmental water exchange kinetics. The SM assumes the exchange kinetics are always effectively infinitely fast; all exchange MR systems remain in their fast-exchange-limit [FXL] conditions. The SSM admits these systems can transiently depart their FXLs during bolus CR passage through tissue (1,2).

Currently, there is no widely adopted, standard DCE-MRI protocol for data acquisition and processing. As is the case for the SM, accuracy and reproducibility of parameters derived from SM analysis of DCE-MRI data may be influenced by data acquisition and processing scheme choices, such as arterial input function (AIF) quantification (6,7). We hypothesize that the \(AK_{\text{trans}}\) subtraction may mitigate or eliminate many systematic DCE-MRI parameter errors caused by uncertainties in, e.g., AIF and pre-CR T1 determinations. In this study, we investigated the effects of different AIF estimations on breast tumor pharmacokinetic parameters using the SM and SSM analyses.

Methods: 23 patients with 24 mammography-detected suspicious lesions (1 patient presented 2 lesions) consented to research DCE-MRI studies prior to biopsies as standard care. The DCE-MRI acquisitions were performed using a 3T Siemens instrument with the body transmit and 4-channel phased-array bilateral breast receive RF coils. A 3D TWIST gradient-recalled-echo (GRE) sequence (8) was used to acquire axial bilateral T1-weighted DCE-MRI images, with 10° flip angle, 2.9 ms TE, 6.1 ms TR, 32 cm FOV, 320×320 matrix size, and 1.2 mm slice thickness. TWIST is a k-space undersampling and data sharing GRE sequence delivering near isotropic 1 mm image voxels at 18 s temporal resolution. The total DCE acquisition time was approximately 10 min with Gd CR (Prohance®) IV injection through an antecubital vein (0.1 mmol/kg at 2 mL/s) carried out following acquisition of two baseline image volumes. Prior to DCE-MRI, proton density images were acquired at the same spatial locations - for pre-CR T1 determination. For SM and SSM pharmacokinetic modeling of lesion ROI DCE-MRI time-course data, each analysis was conducted twice, differing only in the AIF employed. One analysis used the population-averaged AIF, <AIF>, obtained from another patient cohort (with the same CR dose, injection rate and site) by averaging reliable individual AIFs measured from an axillary artery (1-3). The other analysis used the patient-specific reference region AIF, AIF\textsubscript{RR}, method (9,10). The AIF\textsubscript{RR} employed for each DCE-MRI data set fitting was derived by adjusting <AIF> peak height using the patient's chest wall muscle as RR (10). Figure 1 shows the <AIF> (black) and two sample AIF\textsubscript{RR}s. Each AIF\textsubscript{RR} has the same shape as <AIF>: one with higher (red) and the other with lower (green) peak amplitude.

Results: Biopsy pathology analyses revealed that 8 of the 24 lesions were malignant. Figure 2 shows lesion ROI \(K_{\text{trans}}(\text{SM})\), \(K_{\text{trans}}(\text{SSM})\), and \(AK_{\text{trans}}\) scatter plots for all 24 lesions. Straight lines connect DCE-MRI data fitting values using the <AIF> and AIF\textsubscript{RR}, respectively, from the same lesion. Note the scale break. Most \(K_{\text{trans}}(\text{SM})\) and \(K_{\text{trans}}(\text{SSM})\) values increase upon going from <AIF> to AIF\textsubscript{RR} – an AIF variation effect. However, the effects on \(AK_{\text{trans}}\) are near zero in most cases. The Table lists the lesion group-averaged [mean±(SD)] AIF effects on ROI \(K_{\text{trans}}(\text{SM})\), \(K_{\text{trans}}(\text{SSM})\), and \(AK_{\text{trans}}\) values: the parameter value obtained using the <AIF> is subtracted from that derived using the AIF\textsubscript{RR}. Paired t tests show that the AIF effects on \(K_{\text{trans}}(\text{SM})\) and \(K_{\text{trans}}(\text{SSM})\) are statistically significant (P<0.01) for both malignant and benign lesion groups [also on \(v_4(\text{SM})\) and \(v_4(\text{SSM})\), not shown: \(v_4\) is the extracellular, extravascular volume fraction], but not on the \(AK_{\text{trans}}\) parameter (P=0.26 and 0.34 for malignant and benign groups, respectively) [nor on \(\Delta V_c\), not shown]. The distributions of AIF effect on \(K_{\text{trans}}(\text{SM})\) and \(K_{\text{trans}}(\text{SSM})\) are broad and centered significantly off zero. The \(AK_{\text{trans}}\) distribution is narrow and centered essentially on zero. Upon going from <AIF> to AIF\textsubscript{RR}, the \(K_{\text{trans}}(\text{SM})\) and \(K_{\text{trans}}(\text{SSM})\) breast cancer diagnostic specificities (at 100% sensitivity) change from 68% and 100% to 75% and 94%, respectively, while the \(AK_{\text{trans}}\) specificity remains 100%.

Discussion: AIF quantification has long been a challenging issue for quantitative DCE-MRI. AIF uncertainty is a major source of systematic pharmacokinetic parameter error. Our results show that no matter which model is used to fit the data, changes in breast tumor \(K_{\text{trans}}\) values resulting from different AIF choices can be significant. AIF time offset error can also propagate into parameter error. These aspects could be particularly troublesome for multi-site DCE-MRI studies because of difficulty in maintaining AIF quantification consistency (reproducibility). Encouragingly, the new \(AK_{\text{trans}}\) (or \(\Delta V_c\)) parameter appears to be much less susceptible to systematic errors caused by AIF variations, presumedly due to similar or equal AIF-induced parameter errors in the SM and SSM analyses being cancelled by the subtraction. Since \(AK_{\text{trans}}\) also is a very sensitive measure of vascular compromise (1,2), the use of this imaging biomarker could be rather advantageous in DCE-MRI studies of cancer detection and therapeutic monitoring.

Grant Support: NIH: RO1-CA120861, RO1-NS40801, RO1-EB00422.