Correlation of Thalamic Volume and Microstructural Abnormalities in Central Visual Pathways in High Risk Preterm Infants

A. C. Nagasunder1,2, R. Ceschin3, R. L. Haynes4, J. Wisowski1,4, J. Tavare5, M. D. Nelson4, S. Bluml1,2, L. Paquette1, and A. Panigrahy1,3

1Radiology, Childrens Hospital Los Angeles, Los Angeles, CA, United States, 2Rudi Schulte Research Institute, Santa Barbara, CA, United States, 3Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States, 4Pathology, Children's Hospital Boston, Boston, MA, United States, 5Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States, 6Division of Pathology, Childrens Hospital Los Angeles, Los Angeles, CA, United States, 7Division of Neonatology, Childrens Hospital Los Angeles, Los Angeles, CA, United States

Purpose: To test the hypotheses that: (1) high risk preterm infants with periventricular leukomalacia (PVL) demonstrate significant correlation between thalamic volume and microstructural abnormalities (MAs) in central visual pathways (optic radiation, splenium) and (2) high risk preterm infants without PVL demonstrate more subtle MAs to central visual pathways compared to preterm infants with PVL and term controls at term equivalent age.

Methods: Preterm neonates were divided into two groups based on occurrence of PVL (focal periventricular necrosis, ventriculomegaly). Echo planar imaging (EPI) diffusion tensor Imaging (DTI) sequence using a neonatal head coil with 25 directions and b=700s/mm² on a 1.5T GE was performed. Tract based spatial statistics (TBSS) in FSL and Region of Interest (ROI) analyses in DTIStudio were used. Brain metric and thalamic volumes were measured using volumetric MR. ANOVA, Tukey's Pairwise and Pearson statistical analyses were performed.

Results: Neuroimaging data were compared among 34 preterms with PVL, 27 preterms without PVL, and 28 term (non-PVL) controls. Post Conceptual Ages (PCA) comparison is shown in Table 1. In preterms with PVL, thalamic volume was significantly reduced compared to the two other groups (p<0.005). In the same group, MAs were significant in the thalamus (p<0.003), optic radiation (p<0.002), splenium (p<0.001), genu (p<0.001), and posterior limb of internal capsule (PLIC) (p<0.005). Preterms without PVL showed subtle MAs in the thalamus and splenium which did not reach statistical significant after correction for multiple comparisons for fractional anisotropy (FA) (Fig.1). Thalamic volume correlated positively with FA in the optic radiation in all preterms (r=0.637) (Fig.2).

Discussion: Preterms with PVL demonstrate extensive white matter tract damage, including MAs in central visual pathways (optic radiation, splenium) as well as non-visual pathways (genu, PLIC). Preterm neonates without PVL demonstrate only subtle MAs in the splenium and thalamus, the latter structure with subdivisions critical to visual processing (e.g., pulvinar). Importantly, the significant correlation between thalamic volume and optic radiation microstructural injury in both preterm groups suggests: 1) damage to central visual pathways is not always associated with PVL detected by neuroimaging; and 2) thalamic injury may play a pivotal role in the pathogenesis of cognitive visual impairment in survivors of prematurity with or without PVL.

Conclusion: There is a strong correlation between thalamic volume and MAs in structures involved in central visual pathways in high risk preterm infants with PVL at term equivalent age. There are subtle MAs noted in central visual pathways in preterm infants without PVL.

Table 1: Age Comparison

<table>
<thead>
<tr>
<th>With PVL</th>
<th>Without PVL</th>
<th>Control Term</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr_Thal_Vol</td>
<td>Pr_Th_Vol</td>
<td>Pr_Thal_Vol</td>
<td></td>
</tr>
<tr>
<td>41.8 (6.1)</td>
<td>42.6 (6.5)</td>
<td>44.4 (4.2)</td>
<td>0.198</td>
</tr>
</tbody>
</table>

Acknowledgements: Support: Rudi Schulte Research Institute, NIH NS 063371 1UL1RR031986, CHLA GCRC CCI-06-00121