Broadband refocusing pulses with B_r, robustness and energy constraints

M. A. Janisch^{1,2}, R. F. Schulte¹, M. Schweiger¹, and S. J. Glaser¹

¹Chemistry, Technische Universität München, Munich, Germany, ²GE Global Research, Munich, Germany, ³Nuclear Medicine, Technische Universität München, Munich, Germany

Introduction

Broadband refocusing pulses are of great interest in localized spectroscopy for improving spatial selectivity, reducing chemical-shift displacements, and reducing anomalous J modulation. In practice the bandwidth of amplitude modulated pulses is limited by the maximum B_r amplitude produced by the RF coil. Broad bandwidth is achieved by amplitude and phase modulated pulses designed with the Shinnar-Le Roux optimized (SLR) [1], optimal control theory (OCT) [2], or with adiabatic pulses [3]. This work extends the OCT approach to limiting pulse energy, which can be necessary under constraints of specific absorption rate (SAR).

Results and Discussion

Optimizations are performed for different energy limits, while keeping T, BW, FTW, and B_{max} fixed. This gives a curve of pulse quality for different pulse energies. Error of quality is plotted against pulse energy, using the quality function for exact B_r calibration (Fig. 1a) and with B_r miscalibration of ±20% (Fig. 1b). The standard SLR pulse with the same B_{max} is given for comparison. Its quality is low because it is not broadband.

The quality increases with larger pulse energy. Pulses optimized without considering B_r deviations (S-BUBOP-0%) reach a slightly better quality with slightly less energy compared to BB-SLR (see cross and square in Fig. 1a). For the same energy, pulses optimized with robustness against B_r inhomogeneity perform worse for exact B_r calibration (see circle and plus sign in Fig. 1a), compared to S-BUBOP-0%. For the same quality, pulses with better B_r robustness need more energy. When looking at pulse performance under B_r±20%, the BB-SLR pulse and S-BUBOP-0% pulses perform worse (see cross and square in Fig. 1b). Optimizing for B_r±10% gives good robustness against B_r±20%. For B_r±20% the best pulse quality of 0.995 is reached with relative pulse energy of 6.8.

In a PRESS experiment the S-BUBOP-20% pulse with energy 4.5 is compared to SLR and BB-SLR (Fig. 2). The chemical-shift displacement between oil and water resonances is reduced with S-BUBOP-20% and BB-SLR (Fig. 2g). With a B_r miscalibration of 20% the BB-SLR shows signal loss, while S-BUBOP-20% performs well (Fig. 2h).

Conclusions

Broadband pulses generally require more energy than non-broadband pulses. Compared to a standard SLR pulse, the exemplary S-BUBOP-20% pulse increases the bandwidth by a factor of 3 using a factor of 4.5 larger pulse energy, and with a smaller transition zone. Unlike BB-SLR pulses, S-BUBOP are robust against B_r miscalibrations.

Acknowledgement: This work was partly funded by BMBF MOBITUM grant #01EZ0826/7.

References: