Histopathological correlation of IVIM-derived true diffusion constant in patients with pancreatic carcinoma and chronic pancreatitis

M. Klauss1, M. Gaida1, A. Lemke1, K. Grünberg2, D. Simon1, S. Delorme3, H-U. Kauczor2, L. Grenacher1, and B. Stieltjes1

1Diagnostic Radiology, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany, 2University of Heidelberg, 3DKFZ

Introduction:
Fibrosis is the most characteristic histopathological feature of pancreatic carcinoma and chronic pancreatitis (1). Both diseases display an increased fibrosis compared to healthy pancreatic tissue and, during radio-chemotherapy, fibrosis increases. Previous studies showed the ability to distinguish pancreatic carcinoma and chronic pancreatitis using the diffusion-weighted imaging (DWI) derived apparent diffusion constant (ADC) (2) and more recent studies using IVIM-derived parameters indicate that differences in ADC depends on the lower perfusion fraction f in pancreatic cancer (3). The true diffusion constant D, reflecting the tissue microstructure did not show any group differences. The aim of this study was to compare differences in D with the histopathological grade of fibrosis in pancreatic diseases regardless of the underlying disease.

Material and methods:
We included 15 patients with histopathological proven pancreatic carcinoma and 9 patients with histopathological proven chronic pancreatitis. DWI-MRI was performed; (parameters: EPI-DWI, TR/TE 1300/60 ms, FOV 350 x 273 mm, resolution 3,5 x 3,5 x 5 mm, 14 slices, (b= 25, 50, 75, 100, 200, 300, 400, 600, 800 s/mm2) before surgery. We calculated the ADC and the IVIM-derived parameters D and f in a polygonal region of interest within the tumours and the foci of chronic pancreatitis. The resected tissue was retrospectively evaluated by a histopathologist with regard to the grade of fibrosis (0=absent, 1=dense tumor glands or single cells, back on back with scanty fibres/ periductal and interlobular fibrosis, 2(moderate)= tumor glands or single cells more disperse, separated by moderate fibres no back on back/ periductal, inter und intralobular fibrosis, 3(severe)=diffuse fibrosis, tumor glands and single cell drifted apart/diffuse fibrosis). Since grade 0 and 1 did not occur, the differences ADC-, D- and f-values between grade 2 and 3 were compared using a two-tailed t-test.

Results:
14 patients were found to have a moderate fibrosis (grade 2) (8 patients with pancreatic carcinoma and 6 patients with chronic pancreatitis), 10 patients had a severe fibrosis (grade 3) (7 patients with pancreatic carcinoma and 3 patients with chronic pancreatitis). The statistical analysis showed a significant difference between the D-values for moderate and severe fibrosis (p = 0.027) with mean D-value of $1.02 \times 10^{-3}\pm 0.48 \times 10^{-3}\text{s}^2/\text{mm}$ for moderate fibrosis and mean D of $1.22 \times 10^{-3}\pm 0.76 \times 10^{-3}\text{mm}^2/\text{sec}$ in the group with severe fibrosis (see fig. 1). There were no significant differences for the f- and ADC-values between moderate and severe fibrosis ($10.3\%\pm 1.5\%$ vs. $11.4\%\pm 2.1\%$ (p = 0.68); $1.19 \times 10^{-3} \pm 0.45 \times 10^{-3}\text{s}^2/\text{mm}$ vs. $1.25 \times 10^{-3} \pm 0.47 \times 10^{-3}\text{s}^2/\text{mm}$ (p = 0.36) respectively).

Discussion and Conclusion:
In contrast to a previous study with 10 patients with pancreatic cancer (3 with loose fibrosis and 7 with dense fibrosis) that reported a difference between the two groups(1), this finding could not be replicated. We did find significant differences for the IVIM-derived true diffusion constant D between moderate and severe fibrosis. A potential explanation is that the ADC is strongly biased by perfusion effects. Since fibrosis seems to increase in pancreatic carcinomas during radio-chemotherapy the ability to assess the grade of fibrosis could be a helpful parameter to evaluate the tumor response. Therefore D could serve as a parameter to monitor tumor response in pancreatic carcinoma.