Decoupling of Intrinsic Insula Subregional Connectivity was Associated with Episodic Memory Decline in Amnestic Mild Cognitive Impairment

C. Xie1,2, F. Bai1,2, X. Zhang1, H. Yu1, Y. Shi1, Y. Yuan1, A. Cohen2, J. Goveas2, G. Chen2, W. Li1, G. Chen2, Z. Yang1, Z. Zhang1,4, and S-J. Li1

1Neurology, School of Clinical Medicine, Southeast University, Nanjing, Jiangsu, China, People's Republic of, 2Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States, 3Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China, People's Republic of, 4Institute of Neuropsychiatry of Southeast University, Nanjing, Jiangsu, China, People's Republic of, 5Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States, 6Beijing Institute of Basic Medical Science, Beijing, Beijing, China, People's Republic of

Introduction: Neuroimaging techniques have been widely employed to study the potential neural mechanisms underlying amnestic mild cognitive impairment (aMCI) and identify the abnormalities of intrinsic connectivity networks in aMCI patients (1-3). However, little is known about the potential contribution of the insula subregional networks (ISNs) to cognitive performance in aMCI patients. The purpose of this study was to characterize the contribution of ISNs to cognitive performance in aMCI patients.

Methods: Thirty aMCI and 26 age-matched cognitively normal (CN) subjects participated in this study (Southeast University (Nanjing, China) Institutional Review Board–approved study). Consent forms were obtained from each subject. The intrinsic connectivity of ISNs was measured by the resting-state functional connectivity MRI approach using a 1.5 T Siemens scanner. Analysis of variance (ANOVA) was used to examine the differential connectivity of ISNs between aMCI and CN groups. Linear regression analysis was used to detect the relationship between the intrinsic connectivity strength of ISNs and cognitive performance in aMCI subjects. Insula subregional volumes also were investigated.

Results: aMCI subjects, when compared to CN subjects, had significantly reduced right posterior insula volumes (Figure 1) and cognitive function, and disrupted intrinsic connectivity of ISNs. Specifically, decreased intrinsic connectivity was primarily located in the frontal-parietal network and the cingulo-opercular network, including the anterior prefrontal cortex (aPFC), inferior frontal gyrus, anterior cingulate cortex, operculum, inferior parietal cortex and the precuneus. Increased intrinsic connectivity was primarily situated in the visual-auditory pathway, including the posterior superior temporal gyrus and middle occipital gyrus, which also are involved in memory processes (Figure 2 and 3). Conjunction analysis found the overlap regions of the anterior insula networks and posterior insula networks in the bilateral aPFC, left dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC) and anterior temporal pole (aTP). Furthermore, these decoupled intrinsic connectivity strengths were positively correlated with episodic memory scores in aMCI patients (Figure 4), but not correlated with executive function, perceptual speed, and working memory (p > 0.05).

Discussion and Conclusion: It is well known that the insula is structurally connected with the prefrontal cortex, parietal cortex, temporal lobe, occipital lobe and subcortical regions, including the ventral and dorsal striatum, as well as the thalamus, and functionally implicated in human perception, cognition and attention processing (4). Recently, several groups have begun to investigate the intrinsic functional connectivity of insula subregions in humans and found distinctions of insula subregional networks (5-7). In the current study, aMCI patients exhibited decoupled intrinsic connectivity of the insula subregions related to target regions; the degree of the connectivity strength was positively correlated with episodic memory scores. These findings strongly suggest that the functional integration of the insula subregional networks plays an important role in the memory processes. It is suggested that balance the coupling of these neural networks could improve therapeutic strategies in treating memory deficits in aMCI patients.


Acknowledgement: This work was supported by NIH Grant AG20279; National Basic Research Program of China (973 Program, 2007CB512308), National Hi-Tech Research and Development Program of China (863 Program, 2008AA02Z413) and National Natural Science Foundation of China (30825014, 30971016).