In Vivo Rat Spinal Cord Relaxation Times Measured at 4.7 T and 11.1 T

G. W. Astary¹, X. Chen², M. Sarntinoranont³, and T. H. Mareci¹

¹Biomedical Engineering, University of Florida, Gainesville, FL, United States, ²Mechanical and Aerospace Engineering, University of Florida, ³Biochemistry and Molecular Biology, University of Florida

Introduction

The magnetic-field-strength dependence of NMR provides an important motivation for the development of high field magnets, since the increased signal strength can provide greater temporal, spatial, and/or spectral resolution. In addition, the frequency dispersion of relaxation times provides important information about dynamic processes in biological tissue. However, the field-strength dependence of NMR parameters (e.g. relaxation times) must be taken into account and may limit improvements in MR signal acquisition. This is essential in studies of the vertebrate central nervous system, since MR provides a tool of critical importance for understanding health and disease, and is particularly significant in the spinal cord, since other methods are limited by penetration depth though bone or lack good soft tissue contrast. Therefore, the purpose of this work was to obtain data, at two additional field strengths, for in vivo rat spinal cord white matter (WM) and gray matter (GM) T₁, and T₂ relaxation times, and relative proton density values (PD), and explore the effects of field strength on the relaxation times.

Methods

Rat spinal cord relaxation time measurements were performed on a 4.7 T horizontal bore magnet system and an 11.1 T horizontal bore magnet system. At both field strengths, a custom quadrature birdcage volume coil (diameter = 8.3 cm) was used for homogenous excitation of the sample and a custom quadrature surface coil was used to enhance the sensitivity of signal detection near the rat spinal cord. A total of 12 MR measurements were performed on 10 female Sprague-Dawley rats using approved experimental protocols and procedures. The spinous process of the T13 vertebral body was palpated and placed in the center of the surface coil with the rat in the supine position. T₁ and T₂ measurements were acquired with a spin echo sequence using axially-oriented slices with a 2 cm × 2 cm FOV, matrix size of 128 × 128 and 3 averages (4.7 T: slice thickness = 2mm, 11.1 T: slice thickness = 1mm). T₁ progressive saturation data was acquired with TR = 5000, 2000, 1000, 500 and 250 ms and TE = 15 ms. T₂-weighted images were acquired with TE = 75, 60, 45, 30 and 15 ms and TR = 2000 ms using a minimally-diffusion-weighted, spin echo sequence to eliminate (or reduce) image-gradient diffusion effects on T₁ measurements by limiting read gradient pulse separation. Regions of interest (ROI) were drawn to completely enclose the WM and GM regions (Fig 1a & d) using a region growing algorithm and T₁ and T₂ were calculated using a saturation-recovery model and spin-echo decay model, respectively. A student’s t-test for population differences with heteroscedastic variance was then used to compare the average T₁ and T₂ values for white matter and gray matter using R (The R Foundation for Statistical Computing).

Results

Table 1 – Reported T₁, T₂ and relative PD in the rat spinal cord in vivo

<table>
<thead>
<tr>
<th>Field Level</th>
<th>Field (T)</th>
<th>WM (ms)</th>
<th>GM (ms)</th>
<th>WM (%)</th>
<th>GM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 T</td>
<td>T2</td>
<td>1089 ± 126</td>
<td>1021 ± 93</td>
<td>79 ± 6.9</td>
<td>64 ± 5.4</td>
</tr>
<tr>
<td>11.1 T</td>
<td>T2</td>
<td>1481 ± 115</td>
<td>1514 ± 99</td>
<td>57.3 ± 4.2</td>
<td>51.9 ± 1.3</td>
</tr>
<tr>
<td>2 T</td>
<td>T7</td>
<td>1518 ± 168</td>
<td>1620 ± 176</td>
<td>41.4 ± 6.3</td>
<td>34.5 ± 3.8</td>
</tr>
</tbody>
</table>

Comparing T₁ (p < 0.001) and PD (p < 0.001) values. As shown in Figure 1(b & e), in vivo T₁ maps, constructed by calculating T₁ on a pixel-by-pixel basis at both field strengths, show little contrast difference further suggesting that T₁ values in the WM and GM are similar. Alternatively, the calculated T₂ map shows clear differences in WM and GM at both field strengths (Fig 1c & f).

Conclusions

At both 4.7 T and 11.1 T, differences in WM and GM T₁ relaxation times were not statistically significant; however, differences in T₂ relaxation times and relative PD values were found to be statistically significant at both field strengths. In addition, the frequency dispersion of T₁ relaxation values shows an increase in T₁ values with field strength, as expected for dipole-dipole relaxation. However, the frequency dispersion of T₂ relaxation values decreases with field strength. In order to compare these results with previously published data, T₂ values were measured with Hahn echoes, rather than a multiple-echo pulse sequence, so dynamic dephasing due to water diffusion in microscopic tissue susceptibility gradients contributes to a greater effective T₂ relaxation. These background susceptibility gradients would be expected to increase with field strength leading to shorter T₂ with increasing field strength.

References


Acknowledgments

The project described was supported by award number R21NS052670 from the National Institute of Neurological Disorders and Stroke. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health. We would also like to thank Jessica Meloy for RF surface coil design and construction and Hector Sepulveda for helping with initial animal experiments.