Methods for Quantification of Absolute Myocardial Oxygen Consumption with 17O-CMR

D. Muccigrosso1, X. He2, D. Abendschein3, A. Bashir1, W. Chen3, R. J. Gropler4, and J. Zheng5

1Washington University School of Medicine, St. Louis, MO, United States, 2University of Pittsburgh, 3University of Minnesota

Purpose

Oxygen has an indispensable role in cardiac energetics, metabolism, and function. Decreased oxygen levels and consumption rate (MVO$_2$) are generally associated with myocardial ischemia, infarction, and heart failure. We have developed a cardiac MR acquisition method using 17O labeled blood solution (17O-CMR) to assess myocardial oxygenation [1]. The aims of this study were to develop a quantitative model to measure absolute MVO$_2$ and evaluate it in a canine model with and without myocardial ischemia.

Methods

Theory: 17O water H$_2^{17}$O is produced in myocardial tissue when 17O$_2$ is metabolized to water at the end of oxidative phosphorylation. Based on a theory developed in brain studies with inhaled 17O$_2$ gas [2], the concentration [H$_2^{17}$O] of the myocardium after the injection of 17O-labelled solution can be described in the following equation:

$$\frac{d[H_2^{17}O]}{dt} = 2MVO_2[A^{17}O_2(t)] \times f_1 + \{m_1C_{LV}(t) - m_2C_{myo}(t)\}$$

(1)

where $C_{myo}(t)$ is the [H$_2^{17}$O] of myocardium; $C_{LV}(t)$ represents the concentration of H$_2^{17}$O in the arterial blood pool, which is measured in the left ventricle (LV) of the heart; m_1 and m_2 are two rate constants that describe the gain of [H$_2^{17}$O] from the blood and loss of [H$_2^{17}$O] into the draining veins, respectively. The constant f_1 is 1.266 g myocardial tissue/g myocardial water. To solve Eq. (1), $C_{LV}(t)$ is first approximated with a gamma variate function as $C_0 \times x^\alpha e^{-x^\beta}$, and $A^{17}O_2(t) = A_0 \times e^{-\rho \tau}$, where C_0, A_0 and ρ are constants to be calculated. Eq. (1) can then be solved as:

$$C_{myo}(t) = \frac{2MVO_2 A_0 f_1}{m_2^2 - \rho^2} \left[e^{-\rho t} - e^{-m_2 t} \right] +$$

$$m_1 \times C_0 \times e^{-m_2 t} + \frac{1}{\rho} \int_0^t x^\alpha e^{-m_2 x} dx + 20$$

(2)

The 20 (mM) represents the natural abundance of 17O in the tissue water. Equation (2) can finally be fitted to the dynamic $C_{myo}(t)$ data set by a non-linear regression method in order to obtain MVO$_2$, as well as m_1 and m_2, as fitting parameters.

Experiments: Six mongrel dogs were prepared for the evaluation of this method. Three dogs were in normal condition and three dogs were instrumented with 90-100% occlusion in two branches of the left anterior descending coronary arteries (LAD). Such acute high-degree stenosis was expected to reduce regional oxygen consumption. The study was performed in a clinical 3T Siemens Trio scanner with 6-element phased-array coils. An artificial blood perfluorodecalin emulsion (PFD), was used as the carrier for the 17O$_2$ gas (OxyToT, Rockland Technimed Ltd, Airmont, NY). Each dog studied was injected with a dose of 2 mL/kg 17O-PFD.

We have developed a CMR spin-locking (T$_{1p}$) technique [1] to measure T$_{1p}$-weighted signals from myocardial tissue that were correlated with [H$_2^{17}$O] [3]. The dynamic T$_{1p}$-weighted images were acquired over a period of 30 min after the injection of 17O-PFD. Absolute quantification of myocardial perfusion was also performed using first-pass perfusion imaging [4]. ROI measurements were carried out in the normal anterior myocardial regions and/or stenosis subtended lateral myocardial regions.

Results

Figure 1 shows myocardial images and $C_{myo}(t)$ or [H$_2^{17}$O] (t) detected in a normal dog. The averaged MVO$_2$ in the anterior normal region was 3.96 ± 0.97 μmol/g/min in three normal dogs, which agrees well with MVO$_2$ measured by PET in mongrel dogs [5]. In stenotic dogs, Absolute myocardial blood flow (MBF) values at anterior and lateral regions were 2.38 ± 1.03 mL/g/min and 1.88 ± 0.91 mL/g/min, respectively. The corresponding MVO$_2$ values were calculated as 2.84 μmol/g/min and 1.57 μmol/g/min, respectively. Figure 2 demonstrate MBF deficit area in the lateral region and a smaller area in less reduction in T$_{1p}$ signals, indicating reduced MVO$_2$ (lower T$_{1p}$ signal intensity correlate with higher MVO$_2$).

Conclusions

This is the first study to quantify absolute MVO$_2$ with 17O-CMR methods using injected 17O agent and a comprehensive model. Future validation study are warranted for establishment of this method to assess bioscale of regional myocardial oxygen metabolism.