Physical orientation in the magnetic field affects diffusion measures: a hardware phantom study

P. Pullens, A. Roebroeck, M. Bastiani, R. Goebel, K. Uludag
Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands, Brain Innovation BV, Maastricht, Netherlands

Introduction
It was shown recently in an isotropic water phantom that ADC values are not equal in each measured diffusion direction due to gradient mis-calibrations [1]. MR resonance frequency is also dependent on the orientation of anisotropic structures in the magnetic field [2], which possibly contributes to deviations in the diffusion measurement. We investigated the effect of orientation of an anisotropic diffusion phantom on the non-DW (b0) signal, FA and the first eigen value ($\lambda_1$). Our results show considerable variations in b0, FA and $\lambda_1$ in the anisotropic phantom at different orientations in the magnetic field.

Methods Acquisition
A commercially available spherical diffusion phantom (Brain Innovation, NL) [3] with 3 tubular anisotropic phantoms in each principal direction was used. Fig 1 shows the opened physical phantom and a rendering of the phantoms x: red, y: green, z: blue. The sphere, marked with an angular grid was rotated in 3 planes in the scanner (x-z, y-z and x-y plane) in steps of ~45 degrees. At each orientation, a DW-MRI scan was made: Siemens Allegra 3T birdcage coil, FOV 192x192mm, 70 slices, 2x2x2 mm voxel size, b-value 1000 s/mm$^2$, 27 diffusion directions and 1 b0 image. A GRE phase and magnitude image were also obtained at the same resolution. TE(1)=10.0ms, TE(2)=12.46ms.

Data Analysis
Data analysis was done in FSL (FMRIB, UK). FA and the first eigenvector $\lambda_1$ were calculated in each phantom orientation. The b0 image from each orientation was co-registered with the reference orientation (X, Y and Z phantoms aligned with x, y, z scanner axis) and the FA and $\lambda_1$ images were transformed into the same principal orientation. The mean, re-oriented FA map was skeletonized to obtain ROIs containing voxels from the tubular phantoms for each principal direction.

Results
Fig 2 shows the b0 images of the phantom rotated in the x-z plane, with the angle of the z-phantom wrt the scanner’s z-axis. The phantom was rotated in a similar fashion in the other two planes.

In Fig 3 we show the mean b0 signal, FA and $\lambda_1$ values from ROIs in the X phantom (red), Y phantom (green) and Z phantom (blue). b0 intensity changes wrt orientation of the phantoms. The phantoms that are rotated wrt the original position show a change in b0 signal intensity, FA and $\lambda_1$, while the values in the phantoms that stay at their original orientation do not change significantly. Apart from that we also observe differences in absolute values of b0, FA and $\lambda_1$ across the 3 measured planes.

Discussion
We observe considerable changes in b0 signal, FA and $\lambda_1$ in the anisotropic phantom while rotating it in the magnetic field in 3 orthogonal planes. The free water $\lambda_i$ in the phantom is not affected by the rotation. Susceptibility is homogenous inside the phantom as revealed by the susceptibility image. The observed b0, FA and $\lambda_1$ signal changes might therefore originate from susceptibility changes due orientation change alone as demonstrated earlier in [2]. Gradient mis-calibration likely adds to this effect as ADC is affected by mis-calibrated gradients [1]. Further studies are needed to investigate the source of the variations. Our results consequently indicate that tissue characterization with DW-MRI in tissue with varying fiber structure orientation (e.g. white matter) will probably be affected by this phenomenon.

References