High-resolution 1H-FID-MRSI of the human brain at 7T

W. Bogner1, S. Gruber1, S. Trattnig1, and M. Chmelik1
1MR Center of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria

Introduction:
Proton magnetic resonance spectroscopic imaging (1H-MRSI) is an essential tool with which to study specific biochemical aspects of brain tissue. This technique enables the non-invasive assessment of local changes in brain metabolism that underlie many brain diseases. 1H-MRSI at ultra-high magnetic field strengths (i.e., ≥7 T) is particularly promising, but still limited considerably by several technical difficulties, including chemical shift displacement errors (CSDE), B₀/B₁ inhomogeneities, a high specific absorption rate (SAR), and decreased T₂ relaxation times.

Methods and Materials:
This work describes a new approach for high spatial resolution 1H-MRSI of the human brain at 7 T in vivo, similar to that proposed by Henning et al. [1]. The presented method is based on free induction decay (FID) acquisition with an ultra-short echo time (TE) of 1.3 ms. This allows full signal detection with negligible T₂ decay or J-modulation. CSDEs were reduced to below 5% per ppm in slice direction and were eliminated in-plane. B₁ sensitivity was similar to that in standard gradient echo images. B₁+ errors were corrected using flip angle maps. Metabolic ratio maps were additionally completely insensitive to receive B₂–inhomogeneities. SAR requirements were well below the limit (~20% = 0.8 W/kg). The suppression of subcutaneous lipid signals was achieved by substantially improving the point spread function. In total six subjects were measured. Four reproducibility measurements were performed in one subject. A 64×64 matrix was acquired within 30 min. A circular k-space was sampled using a spiral pattern, starting in the center of the k-space [2]. Spatial Hamming filtering was performed. First-order phase errors were incorporated into the metabolite basis set. All data were processed using LCmodel software.

Results:
High quality metabolic mapping of several important brain metabolites (NAA, Cho, Cr, Ins, Glu) was achieved for a 64×64 matrix with a 3.4×3.4×12 mm voxel size in six healthy subjects (Fig.1, Fig.2). Subcutaneous lipids were suppressed by an additional factor of ~12 compared to standard 32×32 matrix (Fig.3). Most notably, the ultra-short TE increased the signal-to-noise ratio of J-coupled resonances, such as the important neurotransmitter, glutamate, by a factor of ~10 compared to commonly used 1H-MRSI sequences. In addition to the increased SNR and spectral resolution at 7T, this enables reliable quantification of glutamate signals. Four measurement repetitions in one healthy volunteer provided proof of the good reproducibility of this method. With such a high resolution differences in white and grey matter for Glu/NAA can be easily distinguished. Homogeneous Cho/NAA maps were found. A characteristic Cho hotspot as previously found also by other studies was found in the mesial frontal brain region [3]. Also several other characteristic anatomical differences between grey and white matter were visible.

Discussion and Conclusion:
FID-MRSI as presented in our study is insensitive to T₂ decay, J-modulation, B₁ inhomogeneities, CSDEs, and overcomes SAR restrictions at ultra-high magnetic fields. This makes it a promising method for high resolution 1H-MRSI at 7 T and above.

References: