Carotid plaques in TIA and stroke patients: one-year follow-up study by magnetic

R. Kwee1, R. van Oostenbrugge2, W. Mess3, M. Prins4, R. van der Geest5, J. ter Berg1, C. Franke6, A. Korten7, B. Meems7, J. van Engelshoven7, J. Wildberger2, and E. Kooi4

1Maastricht University Medical Center, Maastricht, Limburg, Netherlands, 2Maastricht University Medical Center, Netherland, 3Leiden University Medical Center, Netherlands, 4Orbis Medical Center Sittard, Netherlands, 5Atrium Medical Center Parkstad Heerlen, Netherlands, 6Laurentius Hospital Roermond, Netherlands, 7VieCuri Medical Center Venlo, Netherlands

Purpose. To investigate the natural course of carotid plaque progression in TIA/stroke patients by using serial multisequence magnetic resonance imaging (MRI).

Methods. Forty TIA/stroke patients with ipsilateral <70% carotid stenosis underwent MRI of the plaque ipsilateral to the symptomatic side at baseline (<3 months after TIA/stroke) and after one year. The protocol for carotid plaque MRI consisted of T1-weighted turbo field-echo (TFE), time-of-flight (TOF), T2-weighted turbo spin-echo (TSE), and pre- and post-gadopentetate dimeglumine-enhanced T1-weighted TSE images (Figures 1 and 2). For each plaque, carotid lumen volume, wall volume, total vessel volume (=carotid lumen volume+wall volume), the presence of a lipid-rich necrotic core (LRNC), fibrous cap (FC) status, and the presence of intraplaque hemorrhage (IPH) were assessed at both time points.

Results. Over a 1-year period, mean carotid lumen volume decreased with 4.8±2.0% (±standard error) (P=0.013). Mean wall volume increased with 11.2±2.2% (P<0.001). Total vessel volume did not significantly change (P=0.147) (Table). At baseline, there were 18 plaques with a LRNC, which also had a LRNC at 1-year follow-up. No plaque without a LRNC at baseline developed a LRNC during the follow-up period. All plaques with a LRNC had a thin and/or ruptured FC at both time points. Twelve patients had IPH both at baseline and at follow-up. In one patient, IPH disappeared, whereas in one other patient, new IPH appeared at follow-up. The presence of IPH and a LRNC with a thin and/or ruptured FC were not significantly associated with plaque progression (P>0.05).

Conclusions. In TIA/stroke patients with ipsilateral <70% carotid stenosis, there is inward plaque remodeling over a 1-year period, while features of plaque vulnerability generally remain unchanged.

Figure 1. Multisequence MR images (T1w TFE, TOF, T2w TSE, pre-contrast T1w TSE, and post-contrast T1w TSE) of a carotid plaque obtained at baseline (upper row) and at 1-year follow-up (bottom row). The LRNC can be observed on both the pre- and post-contrast T1w TSE images obtained at baseline and at 1-year follow-up (asterisks). Arrowheads point at the FC, which is identified as a high signal area between the LRNC and the lumen of the carotid artery. There is a disruption of the FC (arrows) and therefore the FC status was classified as “thin and/or ruptured” at both time points.

Figure 2. Multisequence MR images of a carotid plaque obtained at baseline (upper row) and at 1-year follow-up (bottom row). At both time points there is high signal intensity on the T1w TFE and TOF images (asterisks), indicating a LRNC with IPH. There is no contrast enhancement between the LRNC and the lumen on the post-contrast T1w TSE images, and therefore the FC status was classified as “thin and/or ruptured” at both time points. At both time points there are calcifications in the outer rim of the plaque, identified as hypointense areas on all MR images (arrowheads in pre-contrast T1w TSE images).

Table. MRI plaque characteristics at baseline and after one-year follow-up. Data in table represent mean values ±standard error.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>One-year follow-up</th>
<th>Δ (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotid lumen volume (mm³)</td>
<td>864.2 ± 39.1</td>
<td>816.5 ± 38.0</td>
<td>-4.8 ± 2.0</td>
<td>0.013</td>
</tr>
<tr>
<td>Wall volume (mm³)</td>
<td>946.1 ± 50.5</td>
<td>1040.9 ± 51.3</td>
<td>11.2 ± 2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Total vessel volume (mm³)</td>
<td>1810.3 ± 74.3</td>
<td>1857.5 ± 72.6</td>
<td>3.3 ± 1.6</td>
<td>0.147</td>
</tr>
</tbody>
</table>

References

Acknowledgement
This research was supported by the Center for Translational Molecular Medicine (PARISk) and the Netherlands Heart Foundation (grant 2006B61).