Association between carotid plaque characteristics and cerebral white matter lesions

R. Kwee1, P. Hofman1, E. Groneveld3, D. van Oostenbrugge2, W. Mess1, J. ter Berg1, C. Franke4, A. Korten1, B. Meems4, J. van Engelshoven2, J. Wildberger2, and E. Kooi1

1Maastricht University Medical Center, Maastricht, Limburg, Netherlands, 2Maastricht University Medical Center, Netherlands, 3Orbis Medical Center Sittard, Netherlands, 4Atrium Medical Center Parkstad Heerlen, Netherlands, 5Laurentius Hospital Roermond, Netherlands, 6VieCuri Medical Center, Netherlands

Purpose: To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI. It is known that there is a relation between carotid atherosclerosis and WMLs but it is unclear yet whether this relation is indirect via shared risk factors or causative in nature.

Methods: Fifty TIA/stroke patients with ipsilateral 30-69% carotid stenosis underwent MRI of the plaque and brain at baseline. Brain MRI was repeated after one year. The protocol for brain MRI consisted of T1-weighted turbo field-echo (TFE), time-of-flight (TOF), T2-weighted turbo spin-echo (TSE), and pre- and post-gadopentetate dimeglumine-enhanced T1-weighted TSE images. The protocol for brain MRI consisted of T2-weighted TSE and fluid-attenuated inversion recovery (FLAIR) TSE images. For each plaque, lipid-rich necrotic core (LRNC) volume, fibrous cap (FC) status and intraplaque hemorrhage (IPH) were assessed (Figure 1). Cerebral WMLs (Figure 2) were quantified with a semiautomatic method.

Results. Mean WML volume significantly increased over a one-year period (6.52±1.16 [SE] vs. 6.97±1.26 ml, P=0.005). Age and hypertension were significantly associated with baseline WML volume (Spearman ρ=0.542, P=0.001; and Spearman ρ=0.329, P=0.020, respectively). Age and baseline WML volume were significantly associated with WML progression (Spearman ρ=0.371, P=0.008; and Spearman ρ=0.483, P<0.001, respectively). Baseline WML volume and WML progression did not significantly differ between patients with 30-49% and 50-69% stenosis (P=0.689 and P=0.342, respectively). There were no significant associations between LRNC volume and baseline WML volume (Spearman ρ=0.088, P=0.545) and WML progression (Spearman ρ=0.053, P=0.715). Baseline WML volume and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC (P=0.504 and P=0.867, respectively), and also not between patients with and without IPH (P=0.700 and P=0.917, respectively).

Conclusions. In TIA/stroke patients with carotid stenosis, we found no associations between carotid plaque characteristics and ipsilateral WML severity and progression over a one-year period. This suggests that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs.

Figure 1. Co-registered T1w TFE, TOF, T2w TSE, pre- and post-contrast T1w TSE images of a transverse section of a carotid plaque. The right bottom panel displays the different plaque components: red=lumen; green=outer vessel wall; yellow=LRNC; orange=calcifications; remaining vessel wall area=fibrous tissue. IPH was scored as being present (asterisks in T1w TSE vessel wall; yellow=LRNC; orange=calcifications; remaining vessel wall area=fibrous tissue). THW TSE images of a transverse section of a carotid plaque. The right bottom panel displays the different plaque components: red=lumen; green=outer vessel wall; yellow=LRNC; orange=calcifications; remaining vessel wall area=fibrous tissue. IPH was scored as being present (asterisks in T1w TSE vessel wall; yellow=LRNC; orange=calcifications; remaining vessel wall area=fibrous tissue).

Figure 2. WMLs identified at co-registered T2w TSE (A) and FLAIR (B) images showing WMLs.

Acknowledgement
This research was supported by the Center for Translational Molecular Medicine (PARISK) and the Netherlands Heart Foundation (grant 2006B61).

References