Combining Amide-Proton-Transfer MRI with DCE-MRI to Improve Prostate Cancer Detection

G. Jia1, R. Abaza2, J. D. Williams3, D. L. Zynger4, J. Zhou4, Z. K. Shah1, M. Patel1, S. Sammet1, L. Wei5, R. R. Bahnson2, and M. V. Knopp1
1Wright Center of Innovation in Biomedical Imaging and Department of Radiology, The Ohio State University, Columbus, OH, United States; 2Department of Urology, The Ohio State University, Columbus, OH, United States; 3Department of Pathology, The Ohio State University, Columbus, OH, United States; 4Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; 5Center for Biostatistics, The Ohio State University, Columbus, OH, United States

Introduction

Amide-proton-transfer MRI has recently emerged as a new molecular-MRI technique in which the contrast is determined by a change in water intensity due to chemical exchange with saturated amide protons in protein backbones [1, 2]. This study is to evaluate whether APT-MRI can improve prostate cancer detection in addition to DCE-MRI.

Material and methods

Subjects Twelve patients with prostate cancer scheduled for prostatectomy were evaluated in the retrospective study. The mean age of the patients was 58.5 years (range, 47-68 years).

APT-MRI All patients were imaged on a 3 Tesla MR system (Achieva, Philips Healthcare, Cleveland, OH) using a 32-channel phased array coil. APT-MR imaging was based on single-slice single-shot TSE. The saturation pre-pulse was composed of a train of sixteen 180º block pulses, each with a pulse length of 31 ms and saturation amplitude of 161.3 Hz (3.8 µT). Magnetization transfer spectra with 33 different frequency offsets (-8 to 8 ppm, interval 0.5 ppm) were acquired in three transverse slices at the apex, middle, and base section of the prostate.

DCE-MRI DCE-MRI was performed using a 3D T1-weighted fast field echo sequence in the axial plane with a temporal resolution of 10.7 sec/volume. The extracellular Gd-based contrast agent was intravenously injected (injection dose = 0.1 mmol/kg body weight, injection rate = 0.5 ml/sec) followed by a 20 ml saline flush at a rate of 2 ml/sec.

Image Processing After field homogeneity correction, APT-MRI imaging was quantified using the APT ratio (APTR), which is associated with the magnetization transfer ratio asymmetry at 3.5 ppm. For DCE-MRI data analysis, regions of interest (ROIs) were drawn on tumor and benign peripheral zone (PZ) tissues. Tofts and Kermode pharmacokinetic model was used to fit the data on a pixel-by-pixel basis as well as the ROIs. Ktrans (min⁻¹) and kep (min⁻¹) were calculated. The cutoff value was defined as the average of benign PZ tissue plus one standard deviation and used to differentiate tumor from benign PZ tissue.

Results

DCE-MRI was acquired in eleven out of twelve patients due to one patient (Patient F) allergic to Gd-based agent. Ktrans was 0.50 ± 0.23 min⁻¹ in tumor and 0.27 ± 0.16 min⁻¹ in benign PZ (P = 0.02); and kep was 1.08 ± 0.36 min⁻¹ in tumor and 0.56 ± 0.25 min⁻¹ in benign PZ (P = 0.001). APTR in prostate cancer ROIs was 5.8% ± 3.2%, significantly higher than that in the peripheral zone benign regions (0.3% ± 3.2%, p = 0.006; Figure 1). Using the cutoff value of Ktrans (0.43 min⁻¹) and kep (0.71 min⁻¹), tumor and benign PZ cannot be discriminated in 3 cases (Patient D, I and K). The cutoff value of APTR (3.4%) can be used to differentiate tumor from benign PZ regions in the 3 cases and Patient F without DCE-MRI.

Discussions and Conclusion

APT-MR imaging provides unique information about the presence of prostate cancer based on increased cellular content of mobile proteins, which is complementary to DCE-MRI. Patient with impaired renal function is not uncommon in prostate cancer disease. APT-MRI can detect prostate cancer without injection of a contrast agent in order to improve the diagnostic ability of MRI. In conclusion, APT-MRI is capable to improve cancer detection in addition to microcirculation imaging.

References