Whole-body magnetic resonance imaging, including diffusion-weighted imaging, for diagnosing bone marrow involvement in malignant lymphoma

T. Kwee1, R. Fijnheer2, I. Ludwig3, H. Quarles van Ufford4, C. Uiterwaal5, M. Bierings1, T. Takahara1, and R-J. Nievelstein1

1Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, 2Department of Hematology, Meander Medical Center, Amersfoort, Netherlands, 3Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands, 4Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands, 5Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht, Netherlands

Introduction
The malignant lymphomas, Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), comprise approximately 5.0% of all cancers and account for approximately 3.7% of all cancer deaths in the United States [1]. Accurate assessment of the bone marrow is of major importance in malignant lymphoma because of its prognostic and therapeutic implications [2, 3]. Bone marrow biopsy (BMB) is considered as the gold standard for diagnosing bone marrow involvement, but is an invasive and painful procedure with risk of (hemorrhagic) complications [4]. Recently, whole-body magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) have emerged as potential alternatives to CT for staging of malignant lymphoma [5]. Whole-body MRI also allows visualizing the bone marrow of the entire body. Furthermore, DWI is expected to be of additional value because its high lesion-to-background contrast may increase detectability of bone marrow lesions. If whole-body MRI is accurate in excluding bone marrow involvement, it may spare patients unnecessary BMBs. The purpose of this study was therefore to determine the value of whole-body MRI, including DWI, for diagnosing bone marrow involvement in malignant lymphoma using BMB as the standard of reference.

Subjects and Methods
Forty-eight consecutive patients with newly diagnosed malignant lymphoma (HL: n=10; NHL: n=38; low-grade NHL: n=13; intermediate-grade NHL: n=4, high-grade NHL: n=21) prospectively underwent whole-body MRI (T1-weighted and short inversion time inversion recovery [STIR] [n=48] and DWI [n=44]) and BMB of the posterior iliac crest (unilateral: n=40; bilateral: n=8). Whole-body magnetic resonance images were interpreted by a radiologist who was blinded to BMB findings. Patient-based sensitivities and NPVs of whole-body MRI (without and with DWI) for diagnosing bone marrow involvement were calculated, using BMB as the standard of reference. Whole-body MRI was considered to be sufficiently sensitive compared to BMB in case its sensitivity was equal to or higher than 95%. Sensitivity of whole-body MRI without DWI was compared to that of whole-body MRI with DWI using a McNemar test. P values less than 0.05 were considered significant.

Results
Whole-body MRI without DWI and whole-body MRI with DWI were positive in only 5 of 12 and 5 of 11 patients with a positive BMB, yielding sensitivities of 41.7% (95% CI: 19.3-68.1%) and 45.5% (95% CI: 21.3-72.0%), respectively. Note that the 95% CIs for sensitivities did not include 95%. Sensitivity of whole-body MRI without DWI was not significantly different (P=1.000) from that of whole-body MRI with DWI. Figures 1 and 2 show two representative whole-body MRI examples.

Conclusions
The results of this study show that whole-body MRI (without and with DWI) is negative for bone marrow involvement in a considerable proportion of patients with a positive BMB. Therefore, whole-body MRI is not sufficiently reliable yet to replace BMB for bone marrow assessment in malignant lymphoma. Against our expectation, diagnostic performance of whole-body MRI with DWI was not significantly higher than that of whole-body MRI without DWI. BMB remains necessary in the staging work-up of patients with malignant lymphoma until more advanced whole-body MRI protocols (e.g. at higher field strengths, or using a higher spatial resolution) or whole-body MRI/DWI protocols with bone marrow-specific negative contrast agents like ferumoxtran-10 have proved to achieve a higher diagnostic performance.

References
4. Bain BJ. Haematologica 2006;91:1293-1294

Figure 1. True positive whole-body MRI in a 64-year-old male with follicular lymphoma. Unilateral BMB revealed bone marrow involvement. Coronal T1W (a, b), STIR (c, d), and (gray-scale inverted) diffusion-weighted whole-body MRI (e) not only show widespread supra- and infradiaphragmatic nodal disease and splenic involvement, but also extensive bone marrow involvement in the thoracic and lumbar vertebrae, sacrum, and pelvic bone (arrows).

Figure 2. False-negative whole-body MRI in a 56-year-old male with small lymphocytic lymphoma. Unilateral BMB revealed bone marrow involvement. Coronal T1W (a), STIR (b), and (gray-scale inverted) diffusion-weighted whole-body MRI (c) show widespread nodal disease, but no signs of bone marrow involvement.