Exercise ability is determined by muscle ATP buffer content, not Pi or pH

J. A. Jeneson1, J. P. Schmitz1, J. H. van Dijk2, D. F. Stegeman2, P. A. Hilbers1, and K. Nicolay1
1Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 2Clinical Neurophysiology, University Medical Center St Radboud, Nijmegen, Netherlands

Introduction
Skeletal muscle fails to maintain power output during intense work, a property commonly known as muscle fatigue. In the debate of its molecular basis, the field has recently witnessed a paradigm shift. Intracellular accumulation of inorganic phosphate (P\textsubscript{i}), has replaced muscle acidification as main culprit (1). Specifically, formation of calcium phosphate (CaP\textsubscript{i}) complex in the sarcoplasmic reticular (SR) calcium stores as a result of intracellular accumulation of this ATP hydrolysis product during strenuous work is a leading hypothesis (1). Its significance in vivo has, however, not been tested. Here, we investigated this hypothesis in human subjects in vivo. The dissociation between maximal energetic depletion and maximal muscle acidification that is particular to two-legged voluntary exercise (2) was exploited to design an experiment in which the muscle concentrations of P\textsubscript{i} and H+ at the onset of bicycling exercise were manipulated quasi-independently.

Materials & Methods

Ergometry. An MR-compatible bicycle ergometer constructed from non-ferrous components (3) was used in all studies. Six healthy male subjects (mean age 29 years) twice performed three consecutive bouts of supine bicycling against supramaximal load set in each subject to cause exhaustion at 60 ± 5s. During bout I subjects exercised until exhaustion while during bouts II and III, subjects exercised for 20s. The bouts were separated by 30s rest during which muscle phosphocreatine (PCr) and P\textsubscript{i} content were allowed to partly recover while muscle pH continued to drop. Subjects were instructed to maintain a pedaling frequency of 80 rpm. Set 1 was performed inside a 1.5 T Philips S15/ACS scanner. Set 2 (HDsEMG) was performed outside the magnet. One week of rest was observed between studies. 31P MRS. 31P spectra were acquired from the medial head of the quadriceps muscle of the right leg using a 6 cm surface coil. During exercise RF pulsing was synchronized with cyclic extension of the right leg (3). Spectra were acquired using an AHP pulse with a TR of 3 s; 2 FIDs were summed per spectrum yielding 6 s time resolution. PCr, inorganic phosphate (P\textsubscript{i}) and ATP resonances were fitted in the time domain using the AMARES algorithm in the jMRUI software package. Absolute concentrations were calculated after correction for partial saturation and assuming adenine nucleotide and creatine poolsizes of 8.2 and 42.7 mM, respectively (2). Intracellular pH was calculated from the chemical shift difference between the P\textsubscript{i} and PCr resonances (2).

Results

Figure 1 shows a typical 31P NMR spectrum of the quadriceps muscle acquired at the end of 30 s rest after completion of exercise bout I – i.e. immediately before the start of exercise bout II. Clearly, intracellular P\textsubscript{i} was still significantly elevated compared to resting muscle and the intracellular milieu was significantly acidified (pH 6.5) when the subject resumed bicycling against supramaximal load at a pedaling rate 80 rpm. Figure 2 shows the timecourses of the intramuscular concentration of PCr (A), Pi (B) and pH (C) of an individual subject during a set of serial exercise-recovery bouts. In this particular subject, [PCr] had dropped to 5 mM at exhaustion. During metabolic recovery between bouts I and II, and II and III, [Pi] decreased to 20 mM and pH dropped to 6.5-6.6. Figure 3A shows the mean amplitude (RMS, in mV) of the EMG signals picked up from the medial head of the quadriceps muscle by the array of electrodes during each bout of bicycling against supramaximal load (single individual). Figure 3B plots the time of recovery frequency measured during the exercise-bouts versus the intramuscular Pi and H+ concentrations at that time.

Discussion

This study has demonstrated that healthy human subjects are able to initiate and shortly sustain bicycling exercise against supramaximal load maintaining a pedaling frequency of 80 rpm by recruiting the same motor units in the quadriceps muscle of the upper leg, independent of the intramuscular Pi concentration or pH at the onset of exercise. In all subjects, however, failure to maintain this high pedaling frequency coincided with 85% depletion of the PCr, the main ATP buffer in muscle. These findings suggest a limited role of CaP\textsubscript{i} complex formation or H+ myofilament desensitization in muscle fatigue in vivo. Instead, they point to a major role for local ATP depletion at key nodes in the excitation-contraction coupling network as a result of ATP buffer depletion.

References

Figure 1. 31P NMR spectrum of the quadriceps muscle of a subject obtained at the end of 30 s recovery after bout I – i.e., the starting point of exercise bout II. HMP, hexose monophosphates.

Figure 2. Timecourse of PCr concentration (A), Pi (B) and pH (C) in the quadriceps muscle of an individual subject during one complete set of 3 exercise-recovery bouts (0-180 s excerpt). Shaded blocks indicate exercise bouts I, II and III.

Figure 3. (A) amplitude (mV) of the EMG recordings of the quadriceps muscle during exercise bouts I, II and III (same subject as Figure 2) (B) pedaling frequency (rpm) at various intramuscular concentrations of Pi and H+ during supine bicycling against supramaximal load.