Multi-component T2* relaxation of knee cartilage under UTE acquisitions

Y. Qian1, A. A. Williams2, C. R. Chu2, and F. E. Boada1

1MR Research Center, Radiology, University of Pittsburgh, Pittsburgh, PA, United States. 2Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States

INTRODUCTION This work reports observations of T2* relaxation in human knee cartilage explants under ultrashort echo time (UTE) acquisitions in vitro. The objective of this study was to determine the number and distribution of T2* components. We hypothesize that the three major constituents of articular cartilage extracellular matrix (water, collagen, and proteoglycan) contribute to the existence of multiple T2* relaxations in the tissue. Previous nuclear magnetic resonance (NMR) relaxation studies on bovine knee cartilage plugs suggest that there are four proton spin reservoirs of distinct T2 relaxations: bulk water (T2~20ms), collagen (T2~0.02ms), PG (T2~1ms), and water trapped within collagen fibrils (T2~4ms) (1). However, there are no similar studies on human cartilage on clinical MRI scanner reported in literature. This study was intended to fill this gap of knowledge.

EXPERIMENTS Experiments were performed on a whole-body 3T MRI scanner (Magnetom Trio Tim, Siemens Medical Solutions, Erlangen, Germany) with an 8-channel knee coil (Invivo Inc., Gainesville, FL, USA). Six tibial plateau explants harvested from human intact cadaveric knees (age 58±28yrs in a range of 18-82yrs, 3 males and 3 females, 3 healthy and 3 advanced OA) were scanned under the institutional CORID- and IRB-approved protocols. Data acquisitions were implemented using a home-developed 3D UTE sequence (acquisition-weighted stack of spirals, AWSOS) (2), with parameters of hard RF pulse of 0.4ms, TR=100ms, TE=0.5-40ms at 11 steps, θ=30°, total scan time=4.3-5.3min for one TE image, FOV=100mm, matrix size=256, spatial resolution=0.391mm, slices=40-50 at a thickness of 2mm, in-plane spirals=64 at readout time Ts=5.28ms, fat saturation on. Manual shimming was used to achieve good shim (linewidth <20Hz). No corrections were used during gridding-based spiral image reconstruction. The non-negative least-squares (NNLS) algorithm was used for multi-component T2* fitting for each of pixels. An extra large T2* value of 350ms was included in the fitting to count on base-line signal. An interactive iteration was implemented under a condition of minimum number of T2* components and the NNLS fitting was performed in MATLAB (R2009a, The MathWorks, Inc., Natick, MA).

RESULTS Based on the UTE images of the cartilage explants, four types of T2* decays were detected (Fig. 1): mono-, bi-, tri-, and non-exponential decay. The “non-exponential” decay appeared to consist of a delayed T2* decay with a flat segment at short TEs. The majority of the cartilage pixels (~99%) were found to have T2* decay of mono-, bi-, or non-exponential, with an average long-T2* of ~30ms and short-T2* of ~4ms. Figure 2 demonstrates the number and spatial distributions of the four T2* decay types in a healthy cartilage explant (age 18yr), as well as the corresponding UTE-T2* map. The UTE-T2* map (Fig. 2b) was calculated based on a single-component T2* decay model using all the data acquired at 11-TEs including an ultrashort echo time (UTE) of 0.5ms (Fig. 2a). The multi-component T2* map illustrates the spatial distribution of T2* relaxations (Fig. 2c).

DISSCUSSION The observed T2* decays are attributed to bulk water (~30ms), collagen-trapped water (~4ms), and PG depletion (non-exponential), respectively. We speculate that the more rare tri-exponential decay (~1%, T2*~1ms) is due to fragmented PG macromolecules. In light of these observations, we conclude that a two-component model is sufficient to describe T2* decays in human knee cartilage (3T scanner and min TE=0.5ms). Our findings suggest that bi-exponential T2* decay may be indicative of structurally normal cartilage regions while the mono-exponential T2* decay may be a reflection of relative loosening of local cartilage networks and hence a sign of early cartilage degeneration. Further studies are needed to elucidate the basis of multiple component T2* decay in articular cartilage.