Indirect 17O MRI using T1ρ at 11.7 T

H-Y. Wey1,2, F. Du1, A-L. Lin1, Y-Y. L. Shih1, S. Madi3, P. T. Fox1,2, P. M. Gupte4, and T. Q. Duong1,2

1Research Imaging Institute, UT Health Science Center at San Antonio, San Antonio, TX, United States, 2Radiology, UT Health Science Center at San Antonio, San Antonio, TX, United States, 3Bruker Biospin MRI, Inc., Billerica, MA, United States, 4Rockland Technimed Ltd., Airmont, NY, United States

Introduction 17O MRI provides quantitative cerebral metabolic rate of oxygen (CMRO$_2$) measurements through monitoring the dynamic changes of metabolically generated H$_2$O from 17O$_2$ gas. In 17O MRI, only the metabolized H$_2$O is detectable (molecular 17O$_2$ is not detectable), which simplifies both CMRO$_2$ measurement and quantification compared to the multi-tracer PET approach. 17O nuclei can be detected directly (1) or indirectly (2,3). Direct detection is simpler but is only feasible at ultra-high fields due to low 17O gyromagnetic ratio and has limited spatial resolution. Indirect method, on the other hand, can be done at clinical field strengths and has high spatiotemporal resolution, but is less straightforward (4). Indirect detection can be achieved via T2-weighted MRI with 17O decoupling or spin-lock T1ρ MRI.

In this study, we explored the feasibility of 17O T1ρ MRI on rats at 11.7T with the long-term goals of cross validation with direct detection method and applications to animal models of neurological disease. We first investigated the feasibility of a novel 17O delivery system which involves intravenous injection of a perfluorocarbon (PFC) blood substitute with dissolved 17O$_2$, instead of the, more common, 17O$_2$ gas inhalation. Moreover, in addition to measuring quantitative basal CMRO$_2$, we evaluated two modulations known to change CMRO$_2$: hypothermia and focal ischemic stroke. In the stroke model, diffusion- and perfusion-weighted MRI (DWI and PWI) were also acquired to delineate acute stroke lesion.

Methods Male Sprague–Dawley rats (225-250g, n=4) were anesthetized with 2% isoflurane in air during surgery and maintained with 1.2–1.5% during MRI. A femoral vein was catheterized. For the hypothermia study (n=1), 17O MRI was measured at 37°C and 34°C. For the stroke study (n=3), permanent focal brain ischemia was induced by intraluminal middle cerebral artery occlusion (MCAO) at the right hemisphere. O$_2$ saturation, heart rate, respiration rate, and rectal temperature were monitored continuously and maintained within normal physiological ranges.

17O$_2$ was dissolved in PFC using a system developed by Rockland Technimed LTD. Blood gas was measured to ensure full 17O saturation (average = 841 mmHg). After 2 or 3 mins of baseline T1ρ-weighted MRI, 1–1.4 mL/kg of 17O/PFC was injected and the scan continued for 8-10 mins. Typically, 2-5 injections were made on each animal.

MRI was performed on an 11.7T Bruker Biospec with a Tx/Rx quadrature coil. T1ρ-weighted MRI was acquired using fast spin echo, on-resonance spin lock at 125 Hz, TR/TE$_{eff}$=1000/25 ms, ETL=16, central encoding, and 1.2 partial Fourier acceleration. For T1ρ MRI on rats at 11.7T with the long-term goals of cross validation with direct detection method and applications to animal models of neurological disease. We first investigated the feasibility of a novel 17O delivery system which involves intravenous injection of a perfluorocarbon (PFC) blood substitute with dissolved 17O$_2$, instead of the, more common, 17O$_2$ gas inhalation. Moreover, in addition to measuring quantitative basal CMRO$_2$, we evaluated two modulations known to change CMRO$_2$: hypothermia and focal ischemic stroke. In the stroke model, diffusion- and perfusion-weighted MRI (DWI and PWI) were also acquired to delineate acute stroke lesion.

Results and Discussions Figure 1 shows the T1ρ-weighted signal time courses for normal and hypothermic conditions. T1ρ-weighted signal decreased less significantly at 34°C than 37°C after 17O/PFC injection, indicative of reduced CMRO$_2$. Figure 2 shows the time course of metabolic H$_2$O$_2$ concentration from one animal under normothermia. Two repeated scans were averaged and data within 1 min post-injection (inset in figure 2) were used to calculate CMRO$_2$. The basal CMRO$_2$ was estimated to be 2.10 μmol/g/min ($r^2 = 0.9$), consistent with that reported by 17O direct detection in rats (CMRO$_2 = 2.19$ μmol/g/min) (7). Figure 3 shows the CMRO$_2$ map after 1 hr focal ischemia and the corresponding DWI depicting the hyperintense stroke lesion. PWI confirmed perfusion deficit (data not shown). CMRO$_2$ in the cortices were higher than the subcortical regions. CMRO$_2$ was slightly reduced in the ischemic lesion at this time point although DWI lesion was large, suggesting some tissue with DWI hyperintensity may be amenable to therapeutic interventions.

Conclusion This study demonstrates the feasibility of 17O T1ρ indirect detection MRI to quantitatively image CMRO$_2$ with high spatiotemporal resolution. It is further demonstrated that the novel 17O$_2$ delivery system that involves injection of dissolved 17O$_2$ in PFC blood substitute is practical. 17O T1ρ MRI reliably detects: i) absolute basal CMRO$_2$ that is consistent with published literature, ii) CMRO$_2$ reduction under hypothermia and, iii) CMRO$_2$ reduction in focal ischemic stroke. Future studies will improve in sensitivity and spatial resolution, evaluate the spatiotemporal progression of acute stroke, and cross validate with 17O direct detection MRI. We anticipate 17O T1ρ MRI with the practical PFC delivery system will enable many applications and can be readily applied to humans at clinical field strengths.