Three-Dimensional Stress Cardiac Magnetic Resonance Perfusion Imaging for the Detection of Coronary Artery Disease

R. Manka1, C. Jahnke2, S. Kozerke1, V. Vitanis1, G. Crelier1, R. Gebker2, B. Schnackenburg2, P. Boesiger1, E. Fleck1, and I. Paetsch2

1Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Zurich, Switzerland, 2German Heart Institute Berlin

Introduction:
Adenosine stress cardiac magnetic resonance (CMR) first pass perfusion is highly accurate for the detection of myocardial ischemia. However, current two-dimensional multi-slice acquisitions have limited spatial coverage of the heart and, thus, do not allow complete visualization of myocardial ischemic burden. The purpose of this study was to evaluate a new dynamic three-dimensional (3D) perfusion scan technique exploiting data correlation in k-space and time with joint sensitivity-encoding (k-t SENSE) and determined its value for the detection of coronary artery disease (CAD).

Methods:
130 patients with known or suspected CAD underwent a 3.0 Tesla CMR examination using 10x k-t SENSE (1,2) (TR/TE/flip angle: 1.8ms/0.7ms/15°, saturation prepulse delay: 150 ms, partial Fourier acquisition, voxel size: 2.3x2.3x5.0 mm3). Perfusion scans were obtained under adenosine stress (140 μg/kg/min for 6 min; 0.1mmol/kg Gd-DTPA) and at rest. Quantitative invasive coronary angiography defined significant CAD as $\geq 50\%$ luminal narrowing. For visual analysis, 3D CMR perfusion scans were classified as pathologic if ≥ 1 segment showed an inducible perfusion deficit ($>25\%$ transmurality). Overall image quality of stress and rest 3D CMR perfusion scans was graded on a scale between 1 and 4 (1= nondiagnostic, 2= poor, 3= good, 4= excellent).

Results:
Visual analysis of 3D CMR perfusion resulted in a sensitivity, specificity and diagnostic accuracy of 91.3, 70.5 and 81.5%, respectively. Sensitivity for the detection of single, double and triple vessel disease was 90.2%, 95.0% and 87.5%. The mean visual score of 3D-CMR perfusion imaging was 3.4 ± 0.6 during adenosine stress and 3.5 ± 0.6 at rest (p=ns) (Figure 1).

Conclusions: Dynamic 3D-CMR stress perfusion imaging proved to be a robust method providing high image quality and high diagnostic accuracy for the detection of significant CAD in a routine clinical referral population.

References:

Figure 1:
Consecutive slices of a dynamic 3D-CMR stress perfusion scan; apical (top left) to basal (bottom right). Anterior-anterosetal hypoperfusion from apical to equatorial slices.