Introduction: Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the monitoring of 13C metabolites in vivo at very high SNR [1]. In this work, hyperpolarized 13C 3D-MR spectroscopic imaging (MRSI) was used to measure liver metabolism in mice after expression of the MYC proto-oncogene was switched on and then off in the liver. Mice in various disease stages were studied, and significant differences in hyperpolarized lactate and alanine levels were detected (P < 0.01). In addition, biochemical assays showed increased LDH expression and activity in the MYC-driven tumors.

Methods: Tet-o-MYC/LAP-tTA double-transgenic mice in which the human MYC proto-oncogene is overexpressed only in the liver and can be switched off with doxycycline administration were used [2]. All studies were performed on a GE 3T scanner with a custom 1H/13C mouse coil. 13C 3D-MR spectroscopic imaging data (TE/TR = 140 ms/215 ms, 0.034 cm3 voxel size, 16 second acquisition time) were acquired with a double spin-echo compressed sensing pulse sequence [3] after injection of 0.35 mL of 80 mM hyperpolarized 13C-pyruvate. Lactate area/total carbon (Lac/tCar) and alanine area/total carbon (Ala/tCar) ratios were derived from the spectral arrays. LDH activity assays were performed on a subset of the mice, and Lac/tCar was correlated with LDH Vmax. LDH-A expression assays (microarray analysis) were also performed on different cohorts of MYC and control mice.

Results: Figure 1a shows a representative case of disease progression. Elevated Ala/tCar was observed before a tumor was apparent on anatomic images, and dramatically elevated Lac/tCar was observed afterward. Figure 1b shows a representative case of disease progression after MYC expression was switched off with doxycycline. Reductions in both tumor size and Lac/tCar were observed. Figure 2 shows Lac/tCar and Ala/tCar data from all mice studied. For Lac/tCar, statistically significant differences were detected among no disease (no MYC or MYC on < 30 days), late disease (tumor detectable on anatomic images), and regressed disease groups (P < 0.01). For Ala/tCar, the early disease group (MYC on > 30 days and no tumor on anatomic images) was significantly different from the other groups (P < 0.01). These results paralleled the examples in Figure 1. Figure 3a shows a comparison of LDH-A expression between control and MYC mice. As expected, LDH expression was significantly (P < 0.002) elevated in the MYC group. Figure 3b shows LDH activity assay data collected from mice that were sacrificed after hyperpolarized experiments. A strong correlation (r = 0.82, P < 0.02, one outlier excluded) was found between Vmax of LDH activity and Lac/tCar. Note that Figure 3b contains data from both healthy and late disease animals.

Discussion: The inducible transgenic animal model allowed for direct analysis of de novo tumor formation driven by a defined oncogenic event. Metabolic changes following MYC activation/deactivation were monitored by using hyperpolarized 13C-pyruvate to probe the LDH pathway, a direct transcriptional target of MYC. Significant changes in hyperpolarized lactate and alanine levels were detected with oncogene expression and inhibition. This study demonstrated the potential of hyperpolarized 13C to monitor cancer progression and gene therapy in liver and other oncogene-driven cancers.

Acknowledgments: Funding from NIH EB007588 & CA137298.