Optimized chemical shift selective suppression for pTx systems at 7T

R. Gumbrecht1,2, B. Gagoski1, and E. Adalsteinsson1,3

1Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, 2Department of Physics, Friedrich-Alexander-University, Erlangen, Germany, 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

Introduction: Parallel RF transmission (pTx) offers flexible control of magnetization generation and has been successfully applied at 7T for spatially tailored excitations and mitigation of in-plane B1+ inhomogeneity for slice-selection [1, 2]. CHESS [3] pulses are known to provide good frequency selective suppression in proton spectroscopy as long as B1+ inhomogeneity is small. In this work we propose an optimized pTx CHESS pulse design for high-field applications where where variation in peak-to-trough excitation field magnitude is large (~3:1).

Methods: The pTx design method relies on a fast high flip-angle optimization over a Bloch simulator [4]. It uses experimentally collected quantitative B1+ maps [5] to optimize pulse amplitude and phase for all transmit channels and all sub-pulses to achieve the best possible water suppression. The gap between the CHESS sub-pulses was 20ms and they were designed to suppress water in a range of T1 of 1-5s. The performance of the pTx CHESS pulses for water suppression at 7T was demonstrated using B1+ maps from a phantom with 3:1 variation in peak-to-trough excitation field magnitude. These results are compared to conventional CHESS using a birdcage mode excitation.

To accelerate the design and optimization process, all frequency selective pulses are replaced with rectangular pulses that create the same flip-angle. The frequency selection is reintroduced after the pulse optimization is completed without changing the pulse performance.

The availability of 8 transmit channels that drive a loop coil through a Butler matrix makes it possible to create the 3 CHESS sub-pulses in a way that each sub-pulse has spatially different suppression, but the resulting total suppression is very close to uniform. Thus, a low variation in peak-to-trough excitation field magnitude for every sub-pulse is not needed to create uniform water suppression for the three-pulse CHESS combination (Fig. 3).

Results: Numerical simulation of pTx CHESS pulse performance shows large improvement in water suppression compared to conventional CHESS using a birdcage mode excitation (Figs. 1, 2). pTx CHESS pulses achieve a mean water suppression of better than -45dB for the T1 between one and five seconds. Their minimum suppression is always better than -30dB. In contrast, conventional CHESS have a mean water suppression of only around 25dB. The design method used a graphics processor (NVIDIA, CUDA architecture) for compute intensive parts of the optimization. The pulse design took less than 2 s for an 8 channel transmit array and B1+ maps with a resolution of 128 by 128 (Macbook Pro, 2.2GHz Core 2 Duo and GeForce 8600M GT).

Discussion and Conclusion: We presented a new method for chemical shift selective suppression for pTx systems in the presence of large B1+ field inhomogeneity. Pulses that achieve a substantially better water suppression compared to conventional CHESS are designed in less than 2 s using a low-end graphics processor. This is achieved without compromising the ability of CHESS pulses to suppress spins over a large range T1.


Support: Siemens Medical Solutions, NIH R01EB007942, R01EB006847, NCRR P41RR14075, HST Martinos Catalyst Fund