Spike artifact reduction in nonconvex Compressed Sensing

T. C. Basse-Luesebrink1,2, T. Kampf1, A. Fischer1,2, G. Ladewig2, G. Stoll1, and P. M. Jakob1,3
1Experimental Physics 5, University of Wuerzburg, Wuerzburg, Germany, 2Neurology, University of Wuerzburg, Wuerzburg, Germany, 3Research Center for Magnetic Resonance Bavaria (MRB), Wuerzburg, Germany

Introduction

Compressed sensing (CS), a reconstruction method for undersampled MR data, was recently introduced [1]. Since only undersampled data are acquired, CS allows a significant reduction in the time needed for MR experiments. The basic requirement for CS, however, is sparsity in the data. The lack of 19F background signal in living tissue leads to an intrinsically sparse signal distribution in the 19F image domain. This makes 19F MR a suitable application for CS [2]. However, 19F MR data often suffers from a low SNR, which is problematic for CS. Thus, spike artifacts often appear highly pronounced especially in nonconvex CS reconstructions of noisy 19F MR data.

The present study focuses on the reduction of spike artifacts in these CS reconstructions. Therefore, a post-processing “de-spiking algorithm” is proposed, using the fact that the spatial position of spike artifacts depends on the chosen sampling pattern. Numerical phantom simulations as well as ex- and in-vivo 19F CSI experiments were performed.

Materials and Methods

Simulations were performed on a numerical, simplified 3D mouse phantom. All MR measurements were performed using a 1H/19F birdcage coil on a 7T small animal scanner. A fixed mouse labeled with 19F markers served as an ex-vivo phantom. Before marker application, a cerebral infarction was induced using photothrombosis. An additional animal prepared similarly as the ex-vivo animal was measured in-vivo.

For ex- and in-vivo experiments, fully sampled 19F-3D-bssfp-CSI [3] experiments were performed. Imaging parameters: T_w=10/13.5ms; FOV = 70x30x30mm; MTX = 70x48x48; NA = 1. Additionally, a randomly undersampled dataset with an acceleration factor (af) of 8 was acquired. All three spatial dimensions were undersampled.

In Fig. 1, the different data processing steps are displayed. First, a CS reconstruction of the undersampled data was obtained [2,4]. Second, the CS reconstructed data was inverse Fourier transformed. Third, the kspace data was multiplied with a different randomly distributed undersampled data was obtained [2,4]. Second, the CS reconstructed data was inverse Fourier transformed into the image domain. This makes 19F MR a suitable application for CS. However, 19F MR data often suffers from a low SNR, which is problematic for CS. Thus, spike artifacts often appear highly pronounced especially in nonconvex CS reconstructions of noisy 19F MR data.

The present study focuses on the reduction of spike artifacts in these CS reconstructions. Therefore, a post-processing “de-spiking algorithm” is proposed, using the fact that the spatial position of spike artifacts depends on the chosen sampling pattern. Numerical phantom simulations as well as ex- and in-vivo 19F CSI experiments were performed.

Materials and Methods

Simulations were performed on a numerical, simplified 3D mouse phantom. All MR measurements were performed using a 1H/19F birdcage coil on a 7T small animal scanner. A fixed mouse labeled with 19F markers served as an ex-vivo phantom. Before marker application, a cerebral infarction was induced using photothrombosis. An additional animal prepared similarly as the ex-vivo animal was measured in-vivo.

For ex- and in-vivo experiments, fully sampled 19F-3D-bssfp-CSI [3] experiments were performed. Imaging parameters: T_w=10/13.5ms; FOV = 70x30x30mm; MTX = 70x48x48; NA = 1. Additionally, a randomly undersampled dataset with an acceleration factor (af) of 8 was acquired. All three spatial dimensions were undersampled.

In Fig. 1, the different data processing steps are displayed. First, a CS reconstruction of the undersampled data was obtained [2,4]. Second, the CS reconstructed data was inverse Fourier transformed. Third, the kspace data was multiplied with a different randomly distributed undersampled data was obtained [2,4]. Second, the CS reconstructed data was inverse Fourier transformed into the image domain and in a 5th step CS reconstructed. Steps 3-5 were repeated n times. In a final 6th step, the n CS reconstructions were used to generate averaged data. In addition, multiple filters were studied, which focused on the identification of spike artifacts from the n CS reconstructions.

Results

In Fig. 2, exemplary ex-vivo data is displayed. The same slice and spectral point from the brain region is displayed in all images (Fig. 2A-C). Contrary to the fully sampled case (Fig. 2A), the undersampled, nonconvex CS reconstructed data shows visible spike artifacts (Fig. 2B). The histogram in Fig. 2E reflects this behavior. Furthermore, in comparison with the histogram of the fully sampled case (Fig. 2D), Fig. 2E shows that the CS algorithm modifies the signal distribution.

The averaged data generated from the n = 100 CS reconstructions are shown in Fig. 2C and 2F. Spike artifacts appear less pronounced compared to the initial CS reconstructed data. This behavior can also be observed when comparing the histograms of Fig. 2E and 2F. Again, a further modification of the signal distribution can be observed.

Discussion and Conclusion

The proposed algorithm was able to significantly reduce spike artifacts of nonconvex CS reconstructions and thus improve image quality. Besides simply averaging the n CS reconstructions, multiple other “de-spiking filters” can be applied in order to identify spikes in nonconvex CS reconstructions and thus further optimize image quality. Furthermore, since this algorithm is a pure post-processing method, no additional scanner time is needed.

References


Acknowledgements

This work was partly supported by the DFG SFB 688 (B1, B3, B5) and the IZKF Würzburg Project F-25.