Correlation of the Phospholipid-Related Signatures in 31P and 1H Spectra: An Approach to Increase the Sensitivity of the Prediction of Therapeutic Outcome in non-Hodgkin's Lymphoma by In Vivo MRS

1Radiology, Columbia University, New York, NY, United States, 2Radiology, St. George's Hospital, London, United Kingdom, 3Radiology, Cambridge University, Cambridge, United Kingdom, 4Radiology, University of Pennsylvania, Philadelphia, PA, United States, 5Radiology, Institute of Cancer Research, London, United Kingdom, 6Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 7Medical Oncology, Institute of Cancer Research, London, United Kingdom, 8Medical Oncology, Institute of Cancer Research, London, United Kingdom, 9Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands

Our previous cooperative work using 31P MRS to study non-Hodgkin's lymphoma (NHL) patients prior to the start of standard treatment has indicated that the sum of the phospholipid-related intermediates, phosphoethanolamine plus phosphocholine normalized to nucleoside triphosphates (PME/NTP) can successfully predict both the long-term response to treatment and the drug-free survival.1 However, our cooperative results have been hindered by the inherent lack of sensitivity of 31P MRS. Our previous work, which was carried at 1.5 T, was unable to study tumors below 15 milliliters of nominal volume (i.e., a cubic voxel of 25 millimeters per side) which raise two issues with regard to our results. First, a data selection bias might prevent our results from being generalized to the rest of the population if smaller tumors behave differently than larger ones. Second, the significant group of patients with smaller tumors that could not be studied under our protocol limits the clinical application of the technique.

The aim of our present work is to increase the sensitivity of our measurements and concomitantly increase the sensitivity of the prediction of therapeutic outcome in NHL patients. Our initial approach was to include 1H MRS, which increases overall spectral acquisition time by only ten minutes. The rationale for this has been fourfold: the increased sensitivity of the MR determination of 1H in comparison to 31P, the more widely available 1H measurement technology, the reported total choline (tCho) increase in 1H MRS of several tumors that could serve as a marker of treatment response, and the fact that our 31P MRS includes in the determination phosphocholine which is part of the tCho signal in 1H MRS.

We report here our initial results correlating the pretreatment PME/NTP ratio determined by in vivo 31P MRS, which we have shown predicts therapeutic outcome in NHL, with the tCho-to-water (tCho/H$_2$O) ratio determined by 1H MRS.

Procedures & Patients. This work has been approved by the offices in charge of overseeing humans as subjects of research at each institution. Three dimensionally-localized, 1H-decoupled, nuclear Overhauser enhanced, 31P MRS using the chemical shift imaging (CSI) algorithm and a water-suppressed/not-water-suppressed pair of PRESS single voxel 1H MR spectra using a TE of 135 ms were acquired in vivo in the tumors of eight NHL patients prior to start treatment, and the PME/NTP and tCho/H$_2$O ratios determined from the 31P and 1H tumor spectra respectively.

Results. The correlation of the PME/NTP vs. the tCho/H$_2$O ratios determined on each of the NHL patients prior to receive treatment is shown in the Figure. The correlation showed a statistically significant linear regression ($y = 0.16x - 0.77, r^2 = 0.7, p < 0.005$).

Discussion. We have previously reported that a lower pretreatment tumor value of the PME/NTP ratio predicts complete long-term response to cancer treatment in NHL patients, mainly in diffuse large B-cell and follicular lymphomas under anthracycline-based combination chemotherapy.1 The PME/NTP cutoff found to differentiate between complete responses and all the other treatment responses was set at 1.9. Using this PME/NTP cutoff, the regression analysis shown in the Figure predicted that the cutoff for tCho/H$_2$O would be 16.7. This correlation suggests that prediction of treatment outcome may also be possible using the tCho/H$_2$O ratio determined by 1H MRS. This will enable us to study tumors with volumes as small as 1 milliliter, based on the increased sensitivity of the MR observations of 1H in comparison to those of 31P. In addition the simultaneous determination of in vivo 31P and 1H MRS could provide additional information to carry out a more adequate evaluation of the NHL patient undergoing treatment.

Acknowledgement. This work has been supported by NIH grants CA41078, CA62554 through CA62561, and CA118559.