Fluorothymidine as a therapeutic response marker of the investigational anticancer agent RAF265: Insights from 19F-NMR and flow cytometry

A. Dzik-Jurasz¹, M. Lin², K. Dohoney³, J. McCormick³, M. Ising³, D. Stuart⁴, and D. Jespersen⁴

¹Oncology Translational Medicine, Novartis Pharmaceuticals Corporation, Inc, Florham Park, NJ, United States, ²Novartis Pharmaceuticals Corporation, Inc, NJ, United States, ³Novartis Institutes for Biomedical Research, Inc, Cambridge, MA, United States, ⁴Oncology Translational Medicine, Novartis Pharmaceuticals Corporation, Inc, East Hanover, NJ, United States, ⁵Novartis Institutes for Biomedical Research, Inc, Emeryville, CA

Introduction: The purine analogue 3'-deoxy-3'-fluorothymidine (FLT) was originally developed as an antiviral agent because of its inhibition of DNA synthesis[1]. It is now used in its isotopic 19F form as a PET imaging marker of cellular proliferation and is advocated as an early indicator of therapeutic response[2]. The relationship between imaging FLT signal changes and underlying cellular processes however, remains limited. The aim of this study was to correlate changes in the cellular content of 19FLT in A375M cells treated with the investigational anticancer agent RAF265 (Novartis Pharmaceutical Corporation, NJ, USA) using 19F-NMR and flow cytometry (FC).

Materials and Methods

Cell culture and flow cytometry A375M cells, (melanoma cell line) were grown in Eagle’s Minimal Essential Media (ATCC) with 10% HI FCS (Hyclone), penicillin 100U/ml and streptomycin 100μg/ml (Invitrogen). Cells were grown in either 1:1000 DMSO (control) or 1μM solution of the experimental drug RAF265. All experiments were performed in triplicate including one parallel experiment under identical conditions for Annexin V and cell cycle analysis. After 24 hours, 1.5 mM FLT (Sigma Aldrich, St.Louis, MO) was added to the culture for 2 hours following which an immediate perchloric acid extraction was performed on trypsinized cells. The lysate was collected, neutralized with KOH and frozen at -80°C for subsequent NMR analysis. FC measurements were performed on a B-D Canto II (BD Biosciences, San Jose, CA) with Diva software (BD Biosciences) and analyzed with FlowJo (TreeStar Inc., Ashland, OR) Analysis software with Dean-Jett-Fox cell cycle modeling.

19F-NMR- All experiments were performed at room temperature on a Bruker 300 MHz DPX spectrometer equipped with a QNP probe. All samples were doped with D$_2$O to provide a spin-lock and 5-fluorouracil (Sigma Aldrich, St. Louis MO) as the internal 19F reference. 1H-decoupled experiments were run using 4000 transients and a TD of 64k. The pH of the solutions remained constant. 1H-decoupled spectra of 19FLT in aqueous solution were obtained under identical experimental conditions. LC-MS experiments were performed on samples using a Waters LC-MS system with an ACQUITY UPLC and a LCT Premier TOF mass spectrometer. MS experiments were performed on samples using a Waters LC-MS system with an ACQUITY UPLC and a LCT Premier TOF mass spectrometer.

Results: Flow cytometry (table 1) indicated an 11% and 38% decrease in the proportion of cells in the S, G2/M phase and a 22% decrease in the proportion of cells in combined S+G2/M phase. There was a 15% increase in the proportion of cells in the G0/G1 phase and a 4% lower cell count in the treated samples. There was a 24% drop in the proportion of metabolically active cells as measured by the product of cell count and proportion of cells in the G2/M phase. Samples from the treated group returned 19F-NMR spectra with a distinctly lower amplitude resonance than controls (fig.1) suggesting drug treated cells have a lower content of NMR detectable 19F-nuclei over controls. In addition, comparison of 19F-spectra from the lysate against 19FLT in aqueous solution (fig.2) suggests a chemically distinct 19F-species in the cell extract. LC-MS data of the cell extract shows FLT is absent, but a component with MW of 324 that is, 80 D higher than FLT was observed. On the basis of mass-spectroscopy and NMR the 19F resonance of the cell extract is tentatively assigned to a phosphate metabolite of FLT.

Discussion and conclusion: To the authors’ best knowledge this is the first description via 19F-NMR of the metabolism of 19FLT in cellular culture. 19FNMRR demonstrated a substantially diminished 19F resonance in cells treated with RAF265 over the control group and coincided with a change in the FC cell count and cell cycle profile indicating cellular modulation by RAF265. The results suggest that the 19FNMRR reflects a change in the proportion of cells in the cell-cycle but without a substantial change in cell number. The 19F resonance in the cell extract was clearly distinct to FLT in aqueous solution and is tentatively assigned to a phosphate metabolite of FLT on the basis of our initial MS results and previous literature[3, 4]. In conclusion, we have demonstrated that 19FNMRR and FC can be combined to understand the behavior of 19FLT in the presence of an anticancer agent. This could help interpret signals detected in the clinic.

Table 1 (above): Representing changes in the % of cells throughout the cell cycle and actual cell count with and without treatment

<table>
<thead>
<tr>
<th></th>
<th>G0/G1 (%)</th>
<th>S (%)</th>
<th>G2/M (%)</th>
<th>S+G2/M (%)</th>
<th>Cell count ($\times 10^6$)</th>
<th>Met active cells ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>55.5</td>
<td>20.9</td>
<td>14.1</td>
<td>35</td>
<td>11.2</td>
<td>3.92</td>
</tr>
<tr>
<td>RAF265</td>
<td>63.6</td>
<td>18.7</td>
<td>8.8</td>
<td>27.5</td>
<td>10.8</td>
<td>2.97</td>
</tr>
<tr>
<td>Change</td>
<td>▲ 15%</td>
<td>▼ 11%</td>
<td>▼ 38%</td>
<td>▼ 22%</td>
<td>▼ 4%</td>
<td>▼ 24%</td>
</tr>
</tbody>
</table>

References